
Typhoon Chess Engine

Scott Gasch
scott@wannabe.guru.org

Typhoon Chess Engine
by Scott Gasch

Published $Date$
Copyright © 2002-2006 Scott Gasch

This is a user’s guide for the typhoon chess engine (http://wannabe.guru.org/scott/hobbies/chess). Its intended
audience is the set of people who have downloaded a copy of my chess engine source code available at
http://wannabe.guru.org/svn/typhoon/trunk or have downloaded a precompiled binary that someone else compiled.
The goal of this manual is to document how to build and use the chess engine. If you don’t care about how to use
typhoon are instead looking for a more technical discussion of how to write your own chess engine you might try
http://wannabe.guru.org/scott/hobbies/chess or simply dig into the source code
(http://wannabe.guru.org/svn/typhoon/trunk) itself.

This user’s guide is available in several formats:

• One large HTML file: http://wannabe.guru.org/scott/hobbies/chess/typhoon.html
(http://wannabe.guru.org/scott/hobbies/chess/typhoon.html)

• Plain (7 bit ASCII) text: http://wannabe.guru.org/scott/hobbies/chess/typhoon.txt
(http://wannabe.guru.org/scott/hobbies/chess/typhoon.txt)

• Adobe PostScript: http://wannabe.guru.org/scott/hobbies/chess/typhoon.ps
(http://wannabe.guru.org/scott/hobbies/chess/typhoon.ps)

• Adobe Portable Document Format (PDF): http://wannabe.guru.org/scott/hobbies/chess/typhoon.pdf
(http://wannabe.guru.org/scott/hobbies/chess/typhoon.pdf)

• Microsoft Rich Text Format (RTF): http://wannabe.guru.org/scott/hobbies/chess/typhoon.rtf
(http://wannabe.guru.org/scott/hobbies/chess/typhoon.rtf)

Table of Contents
1. Preliminaries ...1

1.1. Introduction ..1
1.2. Acknowledgments ..1
1.3. Quick Start Guide...2
1.4. System Requirements ...3
1.5. Compilation Guide ...4
1.6. Using Subversion to get Typhoon ...6
1.7. Installation Guide ...6

2. Running Typhoon..9
2.1. Commandline Arguments...9
2.2. Entering Moves ..10
2.3. WinBoard Commands...10
2.4. Miscellaneous Commands..11
2.5. Typhoon Variables ..12

3. Opening Book..14
3.1. Opening Book Commands ...14
3.2. Downloading a Pre-built Opening Book ..14
3.3. Building a Custom Opening Book ...14
3.4. Book Learning..16

4. Endgame Tablebases...19
4.1. An Overview of Tablebases..19
4.2. Using Nalimov Format Tablebases with Typhoon ...20

5. Benchmarks ...21
5.1. The bench Command ...21
5.2. Benchmark Results...21

6. Test Suites ..22
6.1. Test Suite Commands...22
6.2. Test Suite Results ...23

7. Advanced WinBoard Configuration ...24
7.1. Playing Locally ..24
7.2. Engine vs. Engine Matches ..24
7.3. Playing on an Internet Chess Server...25

8. Testing Typhoon ..27
8.1. A DEBUG build ...27
8.2. A TEST build ...27
8.3. An EVAL_DUMP build ...27
8.4. Typhoon Crashes ..27
8.5. Typhoon Blunders ..28

iii

Chapter 1. Preliminaries
This is a the user’s guide for the typhoon chess engine. It covers how to build, install, configure and use the engine.

If you are impatient, have a look at the Quick Start Guide section; it will take you through the basics of getting the
engine installed and working. Come back to the rest of the user’s guide if you run into difficulties.

Readers with more patience may skip the Quick Start and read the rest of the guide in order for a run though of how
to get the engine installed and configured. This will also familiarize you with more advanced topics such as how to
build your own opening book from PGN files, how to instruct typhoon to use Eugene Nalimov format endgame
tablebases, how to run script files and how to execute commends automatically at engine startup time.

Feel free to email me (mailto:scott@wannabe.guru.org) with questions or problems. Before you do, though, please
read this guide and see if your query has been addressed already.

1.1. Introduction
Typhoon is a chess playing program that I’ve been working on for a few years now as a hobby. It’s ugly, unpolished
and full of bugs. While it has its moments of brilliance, it is not yet as strong as some other freely available engines
like Yace or Crafty. If you find a bug, especially one related to playing strength, I’d like to hear about it.
(mailto:scott@wannabe.guru.org)

When I reach a point in this project where I am happy with the playing strength, usability, stability and portability of
the engine I’ll release it under the GPL or a similar license. Until then please consider the source code an
alpha-quality prerelease. Do not redistribute, sell, or modify my chess engine.

Typhoon has a modest (and probably outdated) homepage on the Internet at
http://wannabe.guru.org/scott/hobbies/chess/. Drop by and have a look. Typhoon has played in three (3) tournaments
to date, CCT3 (http://www.vrichey.de/cct3/), CCT4 (http://www.vrichey.de/cct4/) and CCT5
(http://www.vrichey.de/cct5/). In CCT3 it placed 30th of 32. In CCT4 it placed 15th of 46. In CCT5 is placed 6th of
45. The engine also plays from time to time on the Internet Chess Club (http://www.chessclub.com) where it
maintains a standard rating around 2500 and a blitz rating around 2700
(http://www.chessclub.com/cgi-bin/finger/finger.pl?handle=monsoon).

Finally, all files in this archive except where otherwise noted are Copyright (C) 2002-2006 by Scott Gasch. They
come with no warranty of any kind. There are known bugs in the engine. If you choose to use the chess engine then
you do so at your own risk. Caveat emptor.

1.2. Acknowledgments
Thanks to all the members of the Computer Chess Club (CCC) (http://www.talkchess.com) discussion board
especially Bob Hyatt (Cray Blitz, Crafty) and Bruce Moreland (Ferret, Gerbil) for their patience and willingness
to explain chess-programming concepts.

Thanks to Eugene Nalimov and Ernst Heniz (DarkThought) for their continuing work on high quality endgame
tablebases.

Thanks to Tim Mann for his continuing work on xboard / WinBoard. Thanks to Tom Kerrigan (TSCP, Stobor) for
publishing TSCP source code which was the first chess engine I read and the reason I became interested in chess

1

Chapter 1. Preliminaries

programming. Thanks to Thorsten Greiner for writing and publishing the source to his Amy program and (again) to
Bob Hyatt for writing and publishing the source to Crafty.

Thanks (again) to Ernst Heinz for publishing his research on computer chess.

Thanks to FM Vincent Diepeveen (Diep) for his discussions and expert advice. Many thanks to Dann Corbit for the
initial port of typhoon to the Microsoft Visual C/C++ and Intel C++ compilers.

Thanks to IM Mark Chapman for his help with opening book lines and his patient expert analysis of chess positions.

Thanks to Peter McKenzie (LambChop, Warp) for discussing chess programming ideas and sharing his thoughts
and advice.

Finally many thanks to Steve Timson (Chester) for sharing his good ideas and listening to my lousy ones... without
his advice typhoon would surely not be as strong as it is today.

The binaries included in the typhoon distribution are based, in part, on code that I did not write. Such code remains
under the copyright notice of it’s author. I’m grateful to the original authors of the code listed below for sharing it
and giving me permission to use it.

• mtf.c (Mersenne Twister random number generator) is Copyright (C) 1997 by Makoto Matsumoto and Takuji
Nishimura. It has been included in typhoon with the authors’ permissions.

• (part of) system.c, specifically the case insensitive string comparison and manipulation functions, were taken
from the source code for the BSD C runtime library when they were found to be not present on Win32. This code
was released under the BSD license and remains Copyright (C) 1987 by Regents of the University of California.

• Win32 timer code was donated by Dann Corbit during the initial port of typhoon to Win32. It’s used with the
author’s permission. Thanks, Dann!

• egtb.cpp was written by Eugene Nalimov, released as part of crafty, and reused with the author’s permission.

1.3. Quick Start Guide
This is the raw step-by-step guide for getting your copy working on your computer. If you have questions about any
step, stop reading the Quick Start Guide and move on to the detailed explanation later in this document. In fact, if
you are not impatient, go ahead and skip the whole Quick Start Guide; everything covered here is also covered more
completely later on.

1. Verify that you are either running some flavor of Windows NT (NT/2000/XP/Server 2003/Vista), FreeBSD,
Linux or OSX.

2. Verify that you intend to run the chess engine on an x86 microprocessor (Intel Pentium, AMD Athlon,
Intel-based Mac, etc...)

3. If you plan to compile the engine from source code, follow the steps below. If you have a precompiled binary for
your system you can skip these.

a. You will need either gcc, g++, and gmake or the Microsoft Visual C++ compiler.

b. You will also need a copy of the nasm assembler.

c. Copy the source code to a directory on your machine (or use Subversion to get a snapshot).

2

Chapter 1. Preliminaries

d. If you’re using gcc, g++ and gmake have a look at GNUmakefile and make sure all variables look
reasonable to you. Then, from the commandline type make PERF_COUNTERS=1. This will produce a
binary image called typhoon if all goes well.

If you’re using MSVC, select the "Release" configuration and build it. If all goes well it will produce a
binary called typhoon.exe in the Release/ subdirectory. Note that you may have to edit the project
settings to point to where nasm.exe can be found on your system.

e. If you want to build a multithreaded version of the engine with gcc, add MP=1 to your gmake
commandline. If you’re interested in building a multithreaded engine with MSVC just build the "MP
Release" configuration.

4. All you need to play chess is the typhoon binary itself and some chessboard GUI program (like Tim Mann’s
xboard (or winboard) (http://www.tim-mann.org/xboard.html)). To run typhoon under xboard just type
xboard -fcp /path/to/typhoon. Note that typhoon requires version 4.2.3 or higher of xboard (or
WinBoard). There is also a section about using typhoon under xboard or WinBoard later in this guide.

If you want an opening book you can either download one from my site
(http://wannabe.guru.org/scott/hobbies/chess/books) or build your own from PGN. If you’re interested in the
latter, see the guide section about building a book from scratch.

If you’re interested in doing anything non-trivial with the engine you’ll probably want to read the sections on
commandline arguments, commands, and tablebases later in this document.

If you have any problems, please read the rest of this guide before emailing me (mailto:scott@wannabe.guru.org).

1.4. System Requirements
Typhoon only runs on x86 microprocessor based systems. This means that your Intel Pentium or AMD Athlon
system will work. This also means that more recent Apple Macs will run the program. I have not yet ported the code
to any other processor architecture. It’s possible that there will be a native AMD64 port of typhoon in the future
(namely, when I buy a machine or when Apple releases a full 64-bit operating system).

Typhoon only runs under Windows NT (Windows NT 4.0, Windows 2000, Windows XP, Windows Server 2003,
Windows Vista), FreeBSD, Linux and OSX.

Specifically, the engine, when built with Microsoft Visual C/C++, is known not to work with Windows 95,
Windows 98, and Windows ME. Some third parties have reported that the engine does work under Windows 98
when built with Cygwin but I have never tried this configuration. If you’re not sure what version of Windows you are
using, click "start" then "run" then type winver. If the version reported is greater than or equal to 5.0 then your
operating system can definitely run typhoon.

The codebase may build on other operating systems for Intel-based processors. If gcc and nasm are available for
your platform of choice, give it a try and let me know (mailto:scott@wannabe.guru.org) how it goes.

If you got a precompiled version of typhoon from some third party then, of course, you need to make sure the version
you received was built for your system.

3

Chapter 1. Preliminaries

Note: I do not currently provide a precompiled version of the code and that running any program someone else
built for you is inherently risky. Make sure you trust the source of such an image and be careful running it. If
you’re unsure of the integrity of the source of the precompiled package it’s better to build your own.

To run the engine your computer should have something reasonable like at least 128Mb or memory and around
10Mb of free hard drive space for an opening book.

The engine does not need to be run with administrative privileges but if you do run it with elevated privileges it will
do some nice things like try to lock its memory and run with slightly raised priority.

While a chess GUI (like xboard, WinBoard, or Arena) is not technically "required" in order to typhoon, they make
the experience more enjoyable. The engine itself has no UI to speak of -- it is its only output is text based. Therefore
it’s strongly recommended that you download and install some GUI frontend to use with typhoon. There is a section
later in this guide that describes where to get WinBoard and how to get the engine working with it.

1.5. Compilation Guide
If you want to compile the chess engine from source code (which may be your only option since at present I do not
distribute binary images of the engine) you will probably need to use gcc/g++ with GNU make, gcc/g++ with
BSD-style make or Microsoft Visual C/C++.

I’ve built typhoon successfully on pretty much every version of gcc from 2.8 onward. I’ve also used all of the
Microsoft compilers from VC6.0 onward. As far as I know any of these should work fine with the caveat that the
typhoon.sln file currently checked in and available on the source site is for Microsoft Visual C/C++ 2003.

Note: I have never tried using mingw (gcc for Windows) or Intel’s icc (which claims to compile MSVC projects)
so if you try one let me know how it goes. The code is reasonably compiler agnostic so getting it to build on some
other random C/C++ compiler should be relatively painless... I hope. If you have any success porting the
codebase to another toolset, please drop me a line (mailto:scott@wannabe.guru.org).

In order to build x86.asm you will also need a copy of the Netwide Assembler (nasm)
(http://nasm.sourceforge.net/wakka.php?wakka=HomePage). Some (much hairier) alternatives are to translate the
assembly language to work with some other assembler or to just use the C-language versions of the routines in
x86.asm. Neither option is recommended. Make sure that if you are building typhoon on a Mac you have a version
of nasm that can produce mach0 format object files (i.e. it supports the -f macho commandline flag).

Start by copying everything from svn/typhoon/trunk (http://wannabe.guru.org/svn/typhoon/trunk) into a directory on
your machine. While you can do this manually (or with wget/fetch), a cool alternative is to use Subversion
(http://subversion.tigris.org/) (a version control system) to check out a read-only snapshot of the code from my
server. The reason I do not have a pre-packaged code archive is because the code you can download from the URL
above is a current snapshot of the chess engine; when you use the URL above you are getting the most recent update
of the engine available.

Have a look at the README file to humor me. Then, what happens next depends largely on what compiler you have
chosen to use.

4

Chapter 1. Preliminaries

If you decided on the gcc/g++/gmake toolset, take a look at the GNUmakefile. You might want to change some
variables such as CC, CXX and NASM, and CPU based on the system you plan to build with. The defaults are
probably reasonable in most cases.

If you have a BSD-style make, take a look at Makefile instead.

In order to build a single threaded release version of the chess engine, type make PERF_COUNTERS=1. A
multithreaded release version is almost the same, just add an MP=1 to the line. Whereas both Linux and FreeBSD
based systems require explicit no build flags, to build for Apple OSX systems you should add an additional OSX=1
to the build commandline.

While we’re on the subject, here’s a list of the preprocessor symbols that you can use when building typhoon and
their effects:

Preprocessor symbol Effect on image
DEBUG Produces a much slower image that has extra checks

enabled. Symbols are not stripped. See the section about
DEBUG builds for more information.

TEST Bakes some unit testcases into the image, enables the
test command. Refer to the section about TEST builds
for more information.

ASM Causes gcc to produce intermediate assembly language
(.s) files during the build.

EVAL_DUMP Causes the engine to pay attention to all terms affecting a
position’s evaluation and be dump them after every eval.
Read the section about EVAL_DUMP builds to learn
more.

EVAL_TIME Causes the engine to pay attention to how many processor
cycles it spends evaluating each position.

PERF_COUNTERS Enables several performance related counters in the
engine.

BOUNDS_CHECKING If you have patched your version of gcc to include
-fbounds-checking , this builds an image with
baked in bounds checking support.

MP Enables the threadpool and search-splitting code needed
to support more than one thread searching at a time. This
has been tested on 2-cpu and 4-cpu machines. See also the
--cpus commandline argument.

DUMP_TREE Produces dumps of search trees in XML format. Tree
dump files can be viewed with a web browser or using the
typhoonui.exe viewer in the Subversion repository.

OSX Produces a binary for Intel-based Apple Macs

Building with MSVC involves selecting a configuration and compiling. You probably want to build "Release" or
"MP Release". The only wrinkle is that in the custom build step you will probably have to set the path to nasm on
your system. The resulting image will be either Release\typhoon.exe or MP Release\typhoon.exe

5

Chapter 1. Preliminaries

depending on which configuration you built.

The image you build can run stand-alone as a text-based chess engine with no opening book. But if you want to run
in a more comfortable manner, read on to the next sections which cover the details of setup.

1.6. Using Subversion to get Typhoon
I use the Subversion version control system to develop typhoon. If you have svn installed on your system you can
use it to check out a read-only snapshot of the source code on your machine, keep up to date with changes I make,
access file histories, project branches and change logs.

Just use the URL http://wannabe.guru.org/svn/typhoon as your repository path. To get the initial snapshot
of the code issue the svn checkout command from a directory you created to house the typhoon source code:

svn checkout http://wannabe.guru.org/svn/typhoon/trunk

The command svn co is a shorthand version of svn checkout. Also, if you want more of the typhoon project
than just the current code, you can omit the /trunk from the end of your command. Warning, this will checkout a
bunch of papers, PGN files, opening books, etc; the disk space requirements for the full repository are non trivial.

In order to synchronize your enlistment with the current state of the code on my machine, use the svn up
command. Another useful commands is svn log http://wannabe.guru.org/svn/typhoon which will
give you a high level overview of what changed from revision to revision. An alternative is
http://wannabe.guru.org/cgi-bin/svn.pl?operation=log. Using svn diff allows you to see source code changes at a
file level.

svn up

When I am actively developing the engine I make at least one checkin a week (usually more like one a day). So if
you want to track the bleeding edge, this is the way to do it.

1.7. Installation Guide
Once you have a typhoon binary image (either from building it yourself or from downloading a precompiled binary
from some third party) you may want to do some simple setup work.

1. The first thing you may want to do is to install Tim Mann’s graphical chessboard. The UNIX version is called
xboard and the Windows version is called WinBoard. Both can be obtained from the site
http://www.tim-mann.org. This program will provide a nice graphical user interface to typhoon which is a
text-based engine. Without it you’ll be stuck looking at chessboards on a commandline interface. There is a
chapter later in this guide about how to configure the engine to work under WinBoard.

An alternative to xboard/WinBoard is Arena, another graphical chessboard program which can be downloaded
at http://www.playwitharena.com (http://www.playwitharena.com/). While I have only done preliminary testing
with Arena, typhoon seems to work just fine as a WB2 engine under Arena 1.99beta2. Since I haven’t done
much with Arena, if you want to add typhoon as an Arena engine you’re on your own.

6

Chapter 1. Preliminaries

2. After you’ve installed either xboard, WinBoard or Arena you’ll need to copy the typhoon image into some
directory on your hard drive. I usually use C:\typhoon but you can put it wherever you like. I’ll be referring to
the directory you put the image in as the "typhoon installation directory" from now on in this guide.

3. You now have all you need to play chess. However, without an opening move library the engine will play the
same opening moves every game. If you want an opening move library you have two choices: either download
one or build one yourself.

The former choice is easier and I have several opening books available on my server. You can get them from
http://wannabe.guru.org/scott/hobbies/chess/books. The larger the file, the more opening moves in the library. If
you choose to download an opening library file, just pick one and save it to the typhoon installation directory as
book.bin.

The advantage of building your own opening library is that it’s an easy way to tailor the playing style of the
engine. It will only play the opening lines you train it with. To go this route you will need a PGN file full of
games you want the engine to learn opening moves from. Read the section about making a custom opening book
for detailed instructions.

4. Just as an opening library is a database of common opening moves for the engine to use, an endgame tablebase
is a database of endgame positions that the engine can access during the endgame. Typhoon knows how to read
Eugene Nalimov format EGTB files which are the same ones that the popular engine Crafty uses. These files are
quite large; all 3-4-5 man files are over 7Gb in size compressed. A good resource for learning more aboue EGTB
files (including where to get them) is http://www.aarontay.per.sg/Winboard/egtb.html.

If you have EGTB files on your disk you can tell typhoon where they are using the "--egtbpath" commandline
argument. This flag preceeds a quoted, semi-colon delimited path:

typhoon --egtbpath "C:\egtb\three;C:\egtb\four;C:\egtb\five"

You will know that typhoon found and could use the EGTB files if you see it produce a message like "Found
5-men endgame table bases." during startup. More information about the use of EGTB files appears later in the
guide.

5. The final thing you’ll need to do to run the engine on your computer is set the hash table sizes based on the
amount of memory you have in your computer. If you run the engine stand-alone (i.e. not under a GUI like
WinBoard) you can issue the command "dump sizes" to see how much memory the pawn hash table and main
hash table are using. As you can see, the default is for the engine to use just over 300Mb of physical memory:

white(1): dump sizes
sizeof(PAWN_HASH_ENTRY). 88 bytes
sizeof(HASH_ENTRY) 16 bytes
sizeof(MOVE) 4 bytes
sizeof(ATTACK_BITV). 4 bytes
sizeof(SQUARE) 8 bytes
sizeof(POSITION) 1428 bytes
sizeof(MOVE_STACK) 233992 bytes
sizeof(PLY_INFO) 424 bytes
sizeof(COUNTERS) 236 bytes
sizeof(SEARCHER_THREAD_CONTEXT). 264056 bytes
sizeof(GAME_OPTIONS) 1136 bytes
sizeof(MOVE_TIMER) 40 bytes
sizeof(PIECE_DATA) 16 bytes

7

Chapter 1. Preliminaries

sizeof(VECTOR_DELTA) 4 bytes
sizeof(GAME_PLAYER). 16 bytes
sizeof(GAME_HEADER). 64 bytes
sizeof(GAME_MOVE). 60 bytes
sizeof(GAME_DATA). 72 bytes
sizeof(SEE_LIST) 196 bytes
sizeof(BOOK_ENTRY) 36 bytes

Current pawn hash table size 46137344 bytes (~44 Mb)
Current main hash table size 268435456 bytes (~256 Mb)

If this amount exceeds the amount of physical memory on your machine the engine will be extremely slow. It is
possible to reduce the memory footprint of the engine by setting the size of the main hash table. To do so, use
the "--hash" commandline option.

This commandline flag takes one argument. This argument can be the number of entries in the table (at 16 bytes
per entry). Or it can simply be a more friendly "desired size" of the table. Here are some examples of both forms:

typhoon --hash 16384
typhoon --hash none
typhoon --hash 256M
typhoon --hash 128K

The first example above allocates a hash table of 16384 (2^14) entries. Since each main hash entry is 16 bytes in
size, the total memory used by 16384 main hash entries is approximately 256kb. The second form instructs the
engine to use no hash table at all. This is not a recommended configuration but it should work. The third and
fourth forms instruct the engine to allocate approximately 256mb and 128kb respectively.

Remember that the engine allocates other memory besides the hash table; for instance, each searcher thread
requires approximately 75mb of storage. Therefore, if you tell the engine to only use 256mb of hash, do not be
surprised to find the memory footprint of the engine is more like 375mb.

8

Chapter 2. Running Typhoon
This chapter covers typhoon’s commandline arguments and command parser. It gives a list of useful commands for
interacting with the engine. Note that if you are running the engine under WinBoard or some other GUI front end
then your interface will send the commands to typhoon on your behalf. This is a much easier way to interact with
engine and is recommended for most users. The following sections assumes you are an advanced user and running
typhoon in text mode in order to interact with the program directly.

2.1. Commandline Arguments
The following section covers the commandline arguments available when starting the engine and the affect of each
on its behavior.

1. The --cpus argument, followed by a number, can be used with multiprocessor builds of typhoon to indicate how
many searcher threads should be created. The number of searcher threads should be set to the number of
processors in the system:

typhoon --cpus 2

2. The flag --command, followed by a quoted string, can be used to pass an initial command to the engine. Typhoon
will execute the initial command before processing any user input. The initial command is often used to specify
a script to execute.

typhoon --command "bench"

3. The --hash argument takes a number indicating the size of the main hash table. This size must be an even power
of two or it will be rounded downward. The --hash command allows you to tailor engine memory usage to the
size of physical memory on your system. See the installation guide for a full discussion of how this argument
works.

typhoon --hash 16384
typhoon --hash 512M
typhoon --hash none
typhoon --hash 128K

4. Use --egtbpath with a quoted string in order to set the path in which the engine should search for Nalimov
format EGTB files. The string can contain more than one directory if the different directories are separated by
semi-colons (;).

typhoon --egtbpath "C:\TB\three;C:\TB\four;C:\TB\five"

5. Use --batch to indicate that the engine should never listen to user input from the console. This flag takes no
additional parameters and must be used in conjunction with the --command flag. The presence of --batch causes
the engine to skip starting an input thread and exit immediately after executing the initial command.

9

Chapter 2. Running Typhoon

typhoon --command "script C:\ECM.EPD" --batch

2.2. Entering Moves
The most common input you’ll probably send to the engine is a chess move. Typhoon understands moves in two (2)
formats: Standard Algebraic Notation (SAN) and the d2d4 format. When you enter a move in one of these formats
that affects a piece of the side on move, the move will be made and the board redrawn.

2.3. WinBoard Commands
Typhoon supports many commands that are part of the WinBoard protocol. These commands are fully documented
in Tim Mann’s xboard engine interface document at http://www.tim-mann.org/xboard/engine-intf.html. I will briefly
discuss a subset of them here.

• xboard, random, hint, and variant, and edit are not implemented in typhoon and are basically no-ops. Typhoon can
only play regular chess, no variants are supported. To edit a position typhoon uses the newer opcode setboard.

• quit is used to exit the chess program.

• new is used to start a new game. This sets the computer to play black, resets the maximum search depth, resets the
board, and clears all internal data structures.

• force puts the engine in "force mode" which means it plays neither side.

• white and black are used to tell the engine what color the opponent plays and what side has the move currently. For
example white means the engine should play black and that it is current white’s turn to move.

• sd can be used as an alternative to set SearchDepthLimit to set the maximum depth in ply that the engine
should search a position. The maximum value is 63, the minimum is 1.

• st can be used to query or set the clock. If st is followed by a parameter the clock is switched into fixed time per
move mode and the parameter specifies the number of seconds to search per move.

• time can be used in addition to set ComputerTimeRemainingSec to notify the engine about how much
time remains on its clock. This value affects time per move allocation.

• otim can be used in addition to set OpponentTimeRemainingSec to notify the engine about how much
time remains on the opponent’s clock. This value affects draw-value calculation.

• go tells the engine that it plays the side on move and to begin searching immediately.

• ? can be used to interrupt the search and instruct the engine to "move now".

• result is used to report the end of a game and its result. It requires an argument to indicate the result and allows an
optional comment. For example: result 1-0 {black resigns}, result 1/2-1/2 {stalemate}.
The optional comment, if supplied, becomes the result description in the PGN header of the game. This command
triggers book learning and prints out a PGN record of the game.

10

Chapter 2. Running Typhoon

• undo and remove can be used to take back one half-move or one full-move respectively.

• easy and hard instruct the engine to ponder (think on the opponent’s time) or not to ponder respectively.

• name can be used in addition to set OpponentName to set the name of the opponent. This is used to construct
PGN headers.

• rating can be used in addition to set ComputerRating or set OpponentRating to set the ELO rating of
the computer and its opponent. This information is used in draw value calculation and PGN header construction.
The rating command requires two (2) parameters; the first is the computer’s rating and the second is the
opponent’s rating.

• computer can be used in addition to set OpponentIsComputer true to inform the engine that is it playing
against another computer. This setting changes draw value calculation and affects some position evaluation terms.

• rated and unrated can be used to inform the engine that the game it is playing is rated or unrated. Typhoon uses
this information in draw value calculation and when deciding whether to allow a move takeback. This is not part
of the WinBoard protocol but rather is a hack I added to my copy of WinBoard in order to accommodate move
takebacks on Internet Chess Servers.

• level is used setup the chess clock. This command takes three (3) parameters. The first is the number of moves per
time period, the second is the computer’s starting clock value and the third is the increment added to the
computer’s clock per move.

• setboard is used to setup a position on the chessboard. It requires an argument which is the position to setup in
FEN format.

2.4. Miscellaneous Commands
There are still some other commands that have been hacked in and are not part of the WinBoard protocol. These
commands may change at any time and should not be relied upon to remain constant in future versions.

Note also that these commands are hard to access when the engine is running under WinBoard. If you want to use
them you might consider running the engine from the console.

• board can be used to dump a text-mode drawing of the current board position as well as the current FEN.

• pgn can be used to dump a PGN record of the current game.

• fen can be used to display the current board position in FEN format. With an argument this command behaves the
same way that setboard does: it sets the current board position.

• avoid, solution, id and script are commands normally used to set test positions for the engine. They are covered in
more detail in another section.

• bench is a command to run an engine speed benchmark. It is discussed in detail in another section.

• book is a command to manage opening books and is discussed in detail in another section.

• dump and test are commands to show internal engine state and run self diagnostic checks. See the source code for
details.

• eval can be used to display a static evaluation score of the current board position. If the engine is built with
EVAL_DUMP defined it will display the terms that combined to arrive at the eval score.

• help displays a brief command list.

11

Chapter 2. Running Typhoon

• set is used to show or change the state of engine variables. It is discussed in detail in another section.

• version is used to display the version number and build configuration of the engine.

2.5. Typhoon Variables
Many aspects of the engine’s behavior can be controlled by setting the values of variables. Variables in typhoon are
names that hold some value. Variables can hold numbers, strings, times, boolean flags, and so on. To view the present
state of a variable or to change it you use the set command.

With no arguments, set displays the present state of all system variables:

set
AnnounceOpening => "TRUE"
BatchMode => "FALSE"
BlackPlayer => "typhoon"
BlackRating => 0
BlackDescription => "Ver: 1.00 Build Time: 09:08:03 Jul 4 2006"
BlackIsComputer => "TRUE"
BookFileName => "book.bin"
BookProbeFailures => 0
ComputerTimeRemainingSec => 600
EGTBPath => "C:\egtb\three;C:\egtb\four;C:\egtb\five"
GameDescription => "(null)"
GameLocation => "(null)"
GameIsRated => "FALSE"
GameResultComment => "(null)"
LastEval => 0
LogfileName => "typhoon.log"
MoveToPonder => "(null)"
MovesPerTimePeriod => 4294967295
OpponentTimeRemainingSec => 600
PendingInputEvents => 0
PonderingNow => "FALSE"
PostLines => "TRUE"
SearchDepthLimit => 63
SearchTimeLimit => 0
SearchStartedTime => 0.000000
SearchSoftTimeLimit => 0.000000
SearchHardTimeLimit => 0.000000
SearchNodesBetweenTimeCheck => 0
ThinkOnOpponentsTime => "TRUE"
ThinkingNow => "FALSE"
TournamentMode => "FALSE"
VerbosePosting => "FALSE"
WhitePlayer => "(null)"
WhiteRating => 0
WhiteDescription => "(null)"
WhiteIsComputer => "FALSE"
Xboard => "FALSE"

12

Chapter 2. Running Typhoon

When used with one argument, set displays the value of a subset of the engine variables that begin with the user
supplied argument. For example:

set s
SearchDepthLimit => 63
SearchTimeLimit => 0
SearchStartedTime => 0.000000
SearchSoftTimeLimit => 0.000000
SearchHardTimeLimit => 0.000000
SearchNodesBetweenTimeCheck => 0

In order to set the value of any variable, use the set command with two arguments: the first to indicate what variable
name is being set and the second to supply a new value for that variable. For example:

set tourn t

Note that some variables are read only and cannot be set manually. To change such variables I’m afraid you’re stuck
editing the source code.

When you use the set command, the letter case of a variable name is not significant; the names "WhitePlayer" and
"whiteplayer" refer to the same variable in typhoon. Additionally as you noticed in the example above, you may
abbreviate any variable or value name when using the set command as long as the abbreviation is unique. For
example you could use set tourn t to achieve the same result as set TournamentMode True with less
typing.

13

Chapter 3. Opening Book
A chess engine’s opening book is a library of moves in different positions that it can access and play in leu of a
searching for a move. These moves are usually drawn from well known opening lines played by human masters. The
primary purpose of an opening book is to impart some level of understanding of opening theory to the engine. A
secondary goal of an opening book is to vary the deterministic play of the engine.

3.1. Opening Book Commands
Commands affecting typhoon’s opening book are prefixed with the book opcode. They are:

• book name, which sets the opening book filename. If you do not use this command the engine defaults to using
book.bin as the opening book. If you want to use something else or to create a new opening book, use this
command to override the name of the opening book file.

book name newbook.bin

• book import, which can be used to import book learning from an old book into a new one or to merge opening
lines from a PGN file into the current opening book. Any book editing or learning that takes place in a position is
recorded in typhoon’s book.edt file. If you wish to apply these book changes to another book in the future, use
book input. This command also is how you create or merge new lines into the opening book. For more
information about creating an opening book, see the appropriate section.

book import /home/scott/typhoon/pgn/twic.pgn

• book dump learning, which shows book learning in the current position.

• book dump moves, which shows a list of all moves in the opening book at the current position.

• book tourn, which displays or toggles tournament mode. This is equivalent to the set TournamentMode
command.

• book openings, which sets the name of the book opening lines file for use when announcing opening lines.

3.2. Downloading a Pre-built Opening Book
Creating your own custom opening book has the advantage of allowing you complete control over what line are
included. But it requires some time, a machine with a lot of memory, and a good source of PGN data.

If you want to save yourself the trouble of making a custom opening book you can choose from several pre-built
typhoon books which are available at http://wannabe.guru.org/scott/hobbies/chess/books.

14

Chapter 3. Opening Book

3.3. Building a Custom Opening Book
You may want to build a custom opening book with typhoon. This section will describe the process for you and give
a few tips about book building.

To begin you will need to collect the games you want to include in your custom book into a single PGN file. PGN is
a standard format for storing chess games in text files. Programs like the freely available scid which can be obtained
from http://scid.sourceforge.net/ can be very helpful when you are trying to organize and maintain large collections
of chess games. Commercial programs like ChessBase do a good job too, of course.

Typhoon knows how to read PGN format files and import the moves from each game in the PGN file into it’s
opening book. However at this time typhoon’s PGN reader is a little picky about what it can process. In general it’s
pretty good but it will not read games with move lists that do not have a space between the move number and the
move. It also can become confused by variations or comments in the PGN notation. I suggest you use a chess
database to normalize the PGN file you intend to use for your opening book before sending it through typhoon.

Once you have your PGN file ready you have to decide whether you want to merge the openings in the PGN file with
typhoon’s book or create a new book from scratch. The engine has an opening book filename that you can set via the
book name command. If this file exists then the engine will append new openings to it. If this file does not exist
then the engine will create it. By default, this file is called book.bin. Here’s how to override the default:

white(1): book name D:\typhoon\regence.bin
Opening book name set to "D:\typhoon\regence.bin"

Now that you have set the name of the opening book you can import your PGN file to create the new opening lines.
To do this type book import file.pgn. Of course replace file.pgn with the name of your PGN file.
Typhoon will read the PGN file one game at a time and store the moves in the book file in BookName. If typhoon
encounters a game containing an error or a move it does not understand it will output a line like "** BAD Game
NNNN (line NNNNNN) saw=XXX... skipped" and discard all moves in that game. Unfortunately the PGN parser is
fairly picky which is why normalizing your PGN input using a chess database program before building a book is a
good idea. Here’s what to expect:

white(1): book import D:\typhoon\pgn\misc\regence.pgn
The opening book D:\typhoon\regence.bin does not exists, creating new book
Stage 1: reading and parsing PGN

** BAD Game 19498 (line 416067) saw="xc2"... skipped.

** BAD Game 53900 (line 1148893) saw="Rxf8+"... skipped.

** BAD Game 72836 (line 1560210) saw="O-O"... skipped.
Done reading PGN.
Straining out unpopular positions to compact buffer...
Compacting the opening book... one moment.
Done, compacted 2517462 positions into 135201.
Sorting the book... this may take a while.
Merging book and writing to disk.
Book successfully built...

Note: Book building can take quite a while, especially on a machine with limited memory. I suggest you have at
least 1Gb of memory to build a large opening book. If you find that building a book takes multiple hours you can
decrease the number of entries in typhoon’s "membook" by adjusting the MemBookSize variable. Note that the

15

Chapter 3. Opening Book

smaller you make the "membook", though, the more often typhoon will flush unpopular positions from the
opening book. Everytime this happens you risk losing good book lines.

It is safe to terminate typhoon while it is building an opening book if it takes too long. However there is no way to
pick up where it left off and all work on the opening book will be lost.

When you have finished building an opening book I recommend you exit typhoon and restart the engine. This is not
strictly required but is a good idea. Once you have quit typhoon you can check to make sure your new book exists.
To use it, simply use the book name command to instruct typhoon to use an alternate opening book. An alternative
is to rename the file you downloaded as book.bin, the engine’s default opening book name.

white(1): quit
Freeing dynamic memory allocations...
Closing logfile...
Terminating input thread...

D:\typhoon\Release>dir ..\regence.bin
Volume in drive D is New Volume
Volume Serial Number is 1412-36C8

Directory of D:\typhoon

10/10/2002 04:14 PM 4,867,236 regence.bin
1 File(s) 4,867,236 bytes
0 Dir(s) 58,596,573,184 bytes free

3.4. Book Learning
At the end of every game typhoon adjusts its opening book by updating the win/loss statistics on the line of opening
moves it just saw played. This leads to a positive/negative reinforcement of different openings and, hopefully, to
superior play over a long period of time. Typhoon will not adjust the opening book after bullet games, after it beats a
low-rated opponent, or after it is beaten by a high rated opponent (see the rating command). It will also not adjust
the opening book if the losing side lost by forfeit.

When typhoon adjusts the opening book it records the learning in a file on disk called bklearn.dat as well as in
the book file. This allows you to view the learning information periodically and watch which opening lines are
receiving what kind of reinforcement.

Unfortunately typhoon cannot learn new opening moves from game play -- it can simply change the weight of moves
it already knows in a given position. In order to teach typhoon new moves, use the book import command to
merge a new PGN file with the current opening book.

STDIN> result 0-1 {MoonShot checkmated}

[Event "Rated blitz computer chess game"]
[White "MoonShot (computer)"]
[Black "typhoon 0.906 (00:42:58, Oct 8 2002) (computer)"]
[WhiteElo "2795"]

16

Chapter 3. Opening Book

[BlackElo "2731"]
[Result "0-1"]
[Opening: "[B92] Sicilian : Najdorf, Opovcensky Variation"]
[Description: "{MoonShot checkmated}"]

1. e4 c5 2. Nf3 d6 3. d4 cxd4 4. Nxd4 Nf6 5. Nc3 a6
6. Be2 e5 7. Nb3 Be7 8. O-O O-O 9. Be3 Be6 10. f4 exf4
11. Rxf4 Nc6 12. Nd5 Bxd5 13. exd5 Ne5 14. a4 Nfd7 15. Rb4 b6
16. Qf1 a5 17. Rb5 Bg5 18. Bd4 Rc8 19. c3 Re8 20. Re1 Nc4
21. Bxc4 Rxe1 22. Qxe1 Rxc4 23. Nd2 Rxa4 24. Qd1 Rxd4 25. cxd4 Be3
26. Kh1 Bxd4 27. b4 a4 28. Nf3 Be3 29. Qxa4 Qc8 30. Qa3 Bf2
31. h3 Qc4 32. Qa8 Nf8 33. Qe8 h5 34. g3 Qd3 35. Kg2 Be3
36. Ng1 Qc2 37. Kh1 Qf2 38. Qxe3 Qxe3 39. Kg2 Nd7 40. g4 Qd3
41. Rxb6 Nxb6 42. Nf3 Nxd5 43. Kg3 h4 44. Kf2 Qe3 45. Kf1 Nf4
46. Nxh4 g5 47. b5 gxh4 48. b6 Qe2 49. Kg1 Qg2
{MoonShot checkmated}

| c5 (+0.00)
| d6 (+0.00)
| cxd4 (+0.00)
| Nf6 (+0.00)
| a6 (+0.00)
| e5 (+0.00)
| Be7 (+0.00)
| O-O (+0.00)
| Be6 (+0.00)
| exf4 (+0.00)
| Nc6 (+0.00)
| Bxd5 (+0.00)
| Ne5 (+0.00)
| Nfd7 (-0.90)
| b6 (-0.79)
| a5 (-0.08)
| Bg5 (-0.12)
| Rc8 (+0.32)
| Re8 (-0.02)
| Nc4 (+0.14)
| Rxe1 (+0.67)
| Rxc4 (+0.22)
| Rxa4 (+0.72)
| Rxd4 (+0.63)
| Be3 (+0.78)
| Bxd4 (+0.75)
| a4 (+0.75)
| Be3 (+0.81)
| Qc8 (+1.21)
| Bf2 (+1.33)
| Qc4 (+2.87)
| Nf8 (+4.59)
| h5 (+6.03)
|* Qd3 (+9.50)
|* Be3 (+12.06)
|* Qc2 (+13.36)

17

Chapter 3. Opening Book

|** Qf2 (+13.78)
|** Qxe3 (+14.91)
|** Nd7 (+15.16)
|** Qd3 (+15.44)
|** Nxb6 (+16.04)
|** Nxd5 (+17.53)
|******** h4 (+57.50)
|******** Qe3 (+57.52)
|******** Nf4 (+57.56)
|******** g5 (+57.60)
|******** gxh4 (+57.62)
|******** Qe2 (+57.64)
|******** Qg2 (+57.66)

BookLearn: Revising opening book line...
BookLearn: Changed 26 book positions.

18

Chapter 4. Endgame Tablebases
Endgame tablebases are special databases that contain game theoretic information about different board
configurations with very few pieces left on the board. When a chess engine finds a position in a tablebase it will play
perfectly by using the tablebase data. For example, by accessing a tablebase an engine might instantly determine that
a certain configuration of king vs. king, knight and bishop is a mate in 38 for the stronger side.

Eugene Nalimov has created a collection of endgame tablebases that typhoon knows how to access during its search.
At present all 3, 4 and 5 man endgames have a corresponding tablebase and some 6 man endgames also have a
tablebase. The drawback of tablebases is they require a large amount of hard disk space to store and are slow to
access. The benefit of tablebases is that they can drastically improve engine endgame play in certain positions.

This chapter is about tablebases, where to find them, how to generate them, how to validate them, how to compress
them, and how to use them with typhoon.

4.1. An Overview of Tablebases
As the previous section explains, tablebases are endgame databases that contain information the engine can use to
play perfectly in some endgames with a low number of pieces on the board. There are ten (10) 3-man tablebases,
sixty (60) 4-man tablebases, and two-hundred twenty (220) 5-main tablebases. At present some 6-man tablebases
have been generated but are not in wide use because of their large disk space requirements.

Typhoon uses Nalimov format tablebases. These tablebases come two (2) ways: compressed and uncompressed.
Typhoon can use either type. The compressed variety use much less disk space than their uncompressed equivalents
and are only slightly slower to access. Nalimov tablebases are compressed with a program called datacomp.exe.
You can distinguish compressed files from uncompressed ones by looking at the extension: compressed tablebases
end with .emd.

To store all 3 and 4-man tablebases (compressed) on your hard drive you will need approximately 31Mb. If you want
to store all 3, 4 and 5-man tablebases (compressed) you’ll need more like 7.5Gb of drive space. It is estimated that
the full set of 6-man tablebases (when they are available) will consume approximately 1Tb (1024Gb) of drive space.
And for you psychopaths out there, if you wrote one tablebase entry on every atom in the universe you could still not
store a 32-man endgame tablebase file.

Now that you know how much of your hard drive these things will use you may (or may not) want to know where to
get them. One option is to download them from Bob Hyatt’s FTP site at http://ftp.cis.uab.edu/pub/hyatt/TB.
Remember we’re talking about transferring 7.5Gb of data; you’ll need a nice fast connection to even consider this.
With a 56K modem this will take 40 hours (at least) -- probably more.

An alternative to transferring the tablebases is to generate them on your own computer. This way you only have to
download the program that makes the tablebases -- when it runs it will use your computer’s CPU to compute the
tablebase data and save it on your hard drive. The tbexe.zip and tbgen.zip files on the above FTP site contain
the program, source code, and a README file that explains the generation process. I have never been though this
personally but I have heard that it takes about one week of processing time on a computer with a reasonably fast
processor and large amount of memory to generate a full set of 3, 4 and 5-man EGTBs. It should also be noted that
the generation program creates uncompressed tablebase files so you will need approximately 40Gb of drive space to
attempt this. Once you have generated the tablebases, though, you can use datacomp.exe to compress them and
save some space.

19

Chapter 4. Endgame Tablebases

Another choice is to buy these tablebases on CD. Chessbase (http://www.chessbase.com), Gambitsoft
(www.gambitsoft.net), and Convekta (http://store.convekta.com/) all sell sets of Nalimov tablebases on multiple
CDs/DVDs.

Finally, this section would be incomplete without a link to Aaron Tay’s great frequently asked question (FAQ) list
about endgame tablebases which is online at http://www.chesskit.com/aarontay/Winboard/egtb.html. This helpful
page covers different tablebase formats, how to validate your tablebases, how to generate your tablebases and more.

4.2. Using Nalimov Format Tablebases with Typhoon
Once you have some Nalimov format tablebase files (compressed or uncompressed) getting typhoon to use them is
pretty easy. Use the set egtbpath command to tell typhoon where on your hard drive to look for the tablebase
files. If your tablebase files are in more than one directory, just separate the directories by semi-colons (;).

set egtbpath D:\typhoon\egtb\three;D:\typhoon\egtb\four
Rescanning EGTB path...
...Found 4-men endgame table bases.

When you change the value of the EGTBPath variable typhoon automatically rescans the path looking for tablebase
files. Scanning can take a few seconds. If everything goes well you will see a message like "...Found N-men endgame
table bases".

Note: It is recommended you use complete sets of endgame tablebase files. If you try to use 5-man tablebases
without some 4-man tablebases or 4-man tablebases without some 3-man tablebases the engine can become
confused and misplay endgames. It is acceptable to use only some 5-man files if you have all 4-man and 3-man
files, though. Likewise it is acceptable to use some 6-man files if you have all 3, 4 and 5-man files to support
them.

20

Chapter 5. Benchmarks
Benchmarking is the process of measuring the speed of the chess engine. This chapter deals with how to run and
interpret the results of the benchmark.

5.1. The bench Command
The command to begin a benchmark is bench. Be aware that the benchmarking process can take a while and be
prepared to wait.

The bench command runs the same benchmark that Bob Hyatt built into the Crafty chess engine (at least the copy
of Crafty that I have, which is a few versions out of date). It consists of searching in a series of positions and
computing the overall nodes (positions) per second during the searches. This is a good overall speed test for typhoon.

bench
Beginning Bob Hyatt’s crafty benchmark sequence.
This takes a while -- please be patient.

DEPTH LIMIT --> stop searching now
move c3c2
DEPTH LIMIT --> stop searching now
move e5e6
DEPTH LIMIT --> stop searching now
move f4f5
DEPTH LIMIT --> stop searching now
move d7f5
DEPTH LIMIT --> stop searching now
move b7e4
DEPTH LIMIT --> stop searching now
move c8f5

Benchmark results:
122409037 nodes searched
495 sec
247057 overall nps

5.2. Benchmark Results
Please see http://wannabe.guru.org/scott/hobbies/chess/benchmarks.html for up-to-date benchmark results. If you
benchmark typhoon and your system is not on the list below please email me (mailto:scott@wannabe.guru.org) your
results and I will include them here.

21

Chapter 6. Test Suites
One way to measure the strength of a chess engine is to run it against a test suite -- a collection of positions and
solution moves (or moves to avoid). Typhoon supports running test suites and this chapter deals with how to run a
test suite against the engine. It also contains a table of test suite results reported by other users.

6.1. Test Suite Commands
The typhoon commands that support test suites are solution, avoid, id, and script. The solution
command sets up a solution move; typhoon can handle up to three (3) solutions per position. The avoid command
sets up a move to avoid; typhoon can handle up to three (3) avoid moves per position. The id command simply adds
a free form text name for a test position. And the script command reads the contents of a file on disk and treats
everything in it as user input.

Note: You can set up either solution moves or avoid moves but not both in the same position.

Here’s an example of how these commands work together.

st 5
script \typhoon\tests\wac.epd
SCRIPT> setboard 2rr3k/pp3pp1/1nnqbN1p/3pN3/2pP4/2P3Q1/PPB4P/R4RK1 w - -
SCRIPT> solution Qg6
SCRIPT> id "WAC.001"
SCRIPT> go

1u -1.91 00:00:00.08 486 PV= 1. Qe3 Nxe5 [Q] 2. dxe5 [Q] <-2.00>
1u -1.56 00:00:00.11 556 PV= 1. Ne8 <-2.00>
1. -1.56 00:00:00.12 576 PV= 1. Ne8 <-2.00>
2. -1.18 00:00:00.21 1099 PV= 1. Ne8 Qf8 <-2.00>
3+ -0.35 00:00:00.30 3727 Qg6! ++
FORCED MATE --> stop searching now
3. +MATE1 00:00:00.40 8406 PV= 1. Qg6 fxg6 2. Nxg6+ [+] [MATE]
tellothers depth=3, score=+MATE1, n=8406, nps=20863, PV= 1. Qg6 fxg6 2. Nxg6+ [+] [MATE]
move g3g6
...

In the above example the user first types st 5. This sets the clock to fixed-time-per-move mode and tells the engine
to search exactly five (5) seconds per position. Next the user types script /typhoon/tests/wac.epd. This
begins the execution of a script file. From now on typhoon will take commands from this script file one at a time until
the file has been completely executed. Commands that typhoon reads from a script have "SCRIPT>" printed before
them. The script uses setboard, solution and id to set up a test position, a solution move, and the position
name. Then the script sends typhoon the go command and the engine starts thinking. Because the engine has been
told to search exactly five (5) seconds per move, it will stop searching this position when five (5) seconds are up. At
this time it will count the position as solved if the move it plays matches any of the solution move(s) (or does not
match any of the avoid move(s)). It also keeps track of how long it took to see the correct move. Once a script has
finished running completely typhoon will print out some final statistics about the test suite run and begin to watch the
keyboard for commands again.

22

Chapter 6. Test Suites

TEST SCRIPT execution complete. Final statistics:
correct solutions : 272
incorrect solutions : 28
total problems : 300
total nodecount : 40376223
avg. search speed : 125601.9 nps
avg. solution time : 0.4 sec
avg. 1st move beta : 0.936

Time-to-solution histogram:
00.00s .. 00.20s: ******************************* (73)
00.20s .. 00.40s: ** (119)
00.40s .. 00.60s: ************** (31)
00.60s .. 00.80s: ******* (15)
00.80s .. 01.00s: *********** (34)

not solved : **************** (28)

6.2. Test Suite Results
Here are some test suite results obtained by typhoon running on my development machine which is an AMD Athlon
XP 1.533Ghz / 512Mb. In the table the suite abbreviation "ECM" refers to "Encyclopedia of Chess Middlegames"
(http://wannabe.guru.org/scott/hobbies/ECM.EPD) and "WAC" refers to "Win At Chess"
(http://wannabe.guru.org/scott/hobbies/chess/WAC.EPD)

suite sec/move score date hardware
ECM 20 674 / 879 Dec 22, 2004 Dual 1.533ghz Athlon MP

WAC 20 296 / 300 Jan 11, 2002 Dual 1.533ghz Athlon MP

23

Chapter 7. Advanced WinBoard Configuration
This chapter covers how to get typhoon running under WinBoard, a free, open source graphical front-end for chess
engines. For more information about WinBoard or to download it, see http://www.tim-mann.org/xboard.html. This
chapter is also relevant to xboard, WinBoard’s X11-based version. More information about these chess GUI
programs is also available in Aaron Tay’s WinBoard FAQ (http://www.aarontay.per.sg/Winboard/Winboard.html).

7.1. Playing Locally
Probably the most common way you will want to use typhoon with WinBoard is to play local chess matches against
the program using WinBoard as the display. To do this you will need to use WinBoard’s -fcp and -fd

commandline options like this:

winboard -fcp "typhoon" -fd typhoon_directory

The -fcp option sets WinBoard’s first chess program and the -fd sets the first chess program directory. You should
use the directory you installed typhoon in after the -fd option. Once WinBoard is running, set the "Machine Plays
Black" or "Machine Plays White" menu option.

Probably the best way to remember this is to create a little batch file to start up WinBoard for playing locally against
typhoon.

Note: Typhoon’s thinking lines may not be compatible with WinBoard and can cause it to crash when you enable
the "Show Thinking" menu option. I advise you not to do this.

Also, typhoon’s support for "Analysis Mode" in WinBoard is incomplete at the time of writing and may lead to
problems. Please don’t enable either of these WinBoard features for now. Both shortcomings will be addressed in
future releases of the engine.

If everything is working right typhoon should play instantly in the early moves of a new game. If typhoon has to
think for more and a second or two about early moves it may not see the opening book.

If you run into trouble getting typhoon to work under WinBoard I suggest looking at typhoon.log. This file,
which is created by typhoon every time it is invoked, will contain a record of the interaction between the engine and
WinBoard and may help to isolate the problem. You can also enable WinBoard logging by using the -debug
commandline option to WinBoard. This will cause the creation of winboard.log which also may help you track
down the problem.

7.2. Engine vs. Engine Matches
With WinBoard it’s possible to play one chess engine against another. This section explains how to set this up and
how to run engine vs. engine matches as fairly as possible.

24

Chapter 7. Advanced WinBoard Configuration

To run two engines under WinBoard just use both the -fcp and the -scp commandline options. -fcp sets the first
chess program while -scp sets the second chess program. You may want to use the related -fd and -sd options too.
Then, once WinBoard is running, set the "Machine Plays Both" option and watch them fight.

It’s really not advisable to test engines by playing them under WinBoard on a single processor machine. However
running on a two single-threaded engines on a multi-processor (or multi-core) machine is a great way to test engines.

If you do choose to run an engine vs. engine match on a single processor machines you should turn off pondering on
both engines so that they do not constantly compete for system processor resources. The next step is to make sure
that each engine has equal access to the machine’s memory. When playing engine-engine matches, you should set the
hash table sizes of both engines by hand to roughly half the total memory on the machine. Be absolutely sure that
combined memory requirements of the two engines does not exceed the amount of physical memory on your
machine or you will run into swapping which will slow the engine(s) down severely.

7.3. Playing on an Internet Chess Server
Internet Chess Servers are machines on the Internet that allow multiple people/engines to connect and play chess
against one another. WinBoard knows how to connect to and communicate with these servers and therefore you can
use it to play typhoon against other people and machines connected to the same Internet Chess Server. This is a good
way to test two chess engines because when they play over the Internet, unlike when they both play on the same
machine, they do not have to fight each other for access to the processor and memory resources of a single computer.

Note: It’s unethical and against the rules of most Internet Chess Servers to use a computer engine to make
moves on a human account. Your human rating should not be aided by machine and your opponents have the
right to know they are playing against a computer. Most Internet Chess Server administrators are pretty good at
catching people who cheat and banning them from playing. Please don’t use typhoon to cheat on Internet Chess
Servers! Likewise, if you are running typhoon on a chess server I would be grateful if you would list the program
name and hardware configuration in your account’s finger notes.

To connect to an Internet Chess Server with typhoon+WinBoard use the following commandline options when
invoking WinBoard in addition to the normal -fcp and -fd options described in the last sections: -zp (enable
chess engine to ICS code), -ics (connect to ICS server), -icshost (ICS server hostname), -xpopup (no popup
windows), -xautoraise (no popup windows), -xexit (no popup windows), and -reuse (no need to restart the
engine process, reuse the current one). You may also want to use -icsHelper (program name to use to connect to
the ICS, something like timestamp.exe or timeseal.exe), -zippyPassword and -zippyPassword2 (passwords are
for controlling the chess engine remotely). For more information about what these commands do, see the
documentation in winboard.hlp and README.zippy, both of which are included with WinBoard.

Here’s a sample script based on the one I use to connect typhoon to the Internet Chess Club
(http://www.chessclub.com). This script loops forever restarting the engine and WinBoard if they lose connection to
the ICS server or terminate for some reason. You can break out of the script by pressing ^C.

@echo off
:again
cd /d C:\typhoon
"C:\program files\winboard\winboard.exe" /zp /ics /icshost
chessclub.com /icshelper C:\progra~1\winboard\timestamp.exe /fcp
C:\typhoon\release\typhoon.exe /xzt /xexit /xpopup /xautoraise

25

Chapter 7. Advanced WinBoard Configuration

/reuse /debug /zippyPassword xxx /zippyPassword2 yyy
sleep 3
kill -f typhoon.exe
kill -f winboard.exe
sleep 3
goto :again

There are many different Internet Chess Servers on the ’Net. Some are free, others cost money to use. Some are very
busy and others are pretty sparsely used. There’s a list of chess servers on Tim Mann’s website at
http://www.tim-mann.org/ics.html.

26

Chapter 8. Testing Typhoon
Typhoon was released in the present, somewhat buggy state mainly so that I could benefit from a large pool of
testers. Therefore, I am very interested in reports about how the engine does. This chapter is about how you can help
test typhoon. Thanks for helping to make the engine stronger!

8.1. A DEBUG build
With a simple modification to the build instructions presented in an earlier section it is possible to produce a DEBUG
build of the chess engine. A DEBUG build is an engine that runs much more slowly than normal because it is very
carefully double checking every calculation for errors. If an error is found a DEBUG build makes it easier to
understand and fix the problem than a normal build.

In order to make your own DEBUG build, just add DEBUG=1 to the commandline when you build the engine. The
engine will be called _typhoon instead of the usual typhoon.

I try to run DEBUG builds of the engine for long periods of time in order to expose bugs. If you have a spare
machine and some time it would be great if you would be willing to do the same. If your DEBUG build crashes, send
me an email (mailto:scott@wannabe.guru.org) with the message and output of the version command.

8.2. A TEST build
A TEST build is one that has some extra testcode compiled into it. TEST builds will also run the testcode once
automatically at startup. I run TEST builds periodically in order to make sure that I have not broken anything with
my changes. TEST builds are also helpful when you are trying to port the engine to a new platform; if you get a
TEST build to run cleanly (especially a TEST/DEBUG build) then you can be pretty sure the port is good.

If you want to build your own TEST engine, just add TEST=1 to the make commandline.

8.3. An EVAL_DUMP build
An image built with the EVAL_DUMP preprocessor symbol defined will output several debugging messages every
time it runs the evaluation routine (see eval.c). It will also break down the terms contributing to the eval score
when the user types the dump eval command.

These features are useful if you are curious as to what the engine thinks of a position. Of course, it doesn’t make
sense to run the evaluator on a position that is not quiet.

Since the engine produces output everytime it runs an evaluation and because the engine typically runs the evaluation
routine hundreds of thousands of times per second, you should not attempt to search with an engine build using the
EVAL_DUMP flag. It’s too verbose.

If you find a position where you think the engine’s evaluation is totally wrong, please send it to me. While I can’t
promise anything (some positions are too complicated for static analysis), I will definitely take a look.

27

Chapter 8. Testing Typhoon

8.4. Typhoon Crashes
The engine should hardly ever crash. If you find a reproducible way to crash the engine I definitely want to hear
about it. Please send me an email (mailto:scott@wannabe.guru.org) describing how you managed to crash the engine
and the output of the version command.

If you have a typhoon.core file, send that along with a copy of your typhoon image. Better yet, build a DEBUG
build, crash it, and send me the _typhoon.core, and _typhoon files. That makes it easier to figure out what went
wrong.

8.5. Typhoon Blunders
While not as severe as outright engine crashes, I am also interested in positions where the program makes a terrible
move. I’m not a strong chessplayer so your impressions about the engine’s strengths, weaknesses, trends that indicate
errors in judgment, and so on are also very welcome. Please email them to me (mailto:scott@wannabe.guru.org)
along with the output of the version command.

28

