
Parallel Search of Strongly Ordered Game Trees

T. A. MARSLAND AND M. CAMPBELL

Department of Computing Science, Unwers~ty of Alberta, Edmonton, Canada T6G 2H1

The "alpha-beta" algorithm forms the basts of many programs that search game trees. A
number of methods have been designed to improve the utility of the sequential version of
this algorithm, especially for use in game-playing programs. These enhancements are
based on the observation that alpha-beta is most effective when the best move in each
position is considered early in the search. Trees that have this so-called "strong ordering"
property are not only of practical importance but possess characteristics that can be
exploited in both sequential and parallel environments.

This paper draws upon experiences gained during the development of programs which
search chess game trees. Over the past decade major enhancements to the alpha-beta
algorithm have been developed by people building game-playing programs, and many of
these methods will be surveyed and compared here. The balance of the paper contains a
study of contemporary methods for searching chess game trees in parallel, using an
arbitrary number of independent processors. To make efficient use of these processors,
one must have a clear understanding of the basic propertms of the trees actually traversed
when alpha-beta cutoffs occur. This paper provides such insights and concludes with a
brief description of our own refinement to a standard parallel search algorithm for this
problem.

Categories and Subject Descriptors: C.0 [Computer Sys tems Organizat ion]: General--
system architectures; C.1 2 [Processor Architectures] . Multiple Data Stream
Architectures (Multlprocessors)--assoc~atwe processors; parallelprocessors; C.4
[Computer Systems Organizat ion] Performance of Systems--design studies; F.2.2
[Analysis of Algor i thms and Prob lem Complexity] ' Nonnumerical Algorithms and
Problems--pattern matching, 1.2.8 [Artificial Intell igence]: Problem Solving, Control
Methods and Search--heuristic methods, graph and tree search strategies

General Terms: Algorithms, ExperLmentatmn

Additional Key Words and Phrases: Alpha-beta search, computer chess, game playing,
parallel search, tree decomposition

INTRODUCTION

Chess, checkers, kalah, and go are popu-
lar examples of two-person "zero-sum"
games--that is, games in which one player's
losses are his opponent's gains. There are a
number of methods for programming a
computer to play such games. The simplest
(and most successful) programs have as
their basis "brute-force" search, in which

an exhaustive examination of all possible
sequences of moves is carried out until ter-
minal positions are reached (no more legal
moves). By subsequently backing up
through this tree of moves, a player can
find the best move for his side by using the
minimax algorithm. Minimax search as-
sumes that the players will always select
the alternative that is best for them in any
given position. The advantage of such an

Permission to copy without fee all or part of this material ts granted provided that the copies are not made or
distributed for dtrect commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, reqmres a fee and/or specific permtsslon.
© 1982 ACM 0010-4892/82/1200-0533 $00.75

Computing Surveys, Vol. 14. No. 4~ December 1982

534 • T.A. Marsland and M. Campbell

CONTENTS

INTRODUCTION
I. SEQUENTIAL SEARCH ALGORITHMS
2. ENHANCEMENTS TO ALPHA-BETA

SEARCHING
2.1 Asplration Search
2 2 Transposltion Table
2.3 Killer Heuristic
2.4 Iterative Deepening
2 5 Other Searching Techniques

3 APPROACHES TO PARALLEL TREE SEARCH
3.1 Parallel Evaluatmn
3.2 Parallel Aspiration
3.3 Tree Decomposition
3 4 Enhancements to Parallel Search

4 TREE DECOMPOSITION METHODS
4.1 Nalve Approach
4.2 Minimal Tree
4.3 Processor Tree Hierarchy
4.4 Pnncipal Variation Search

5. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES

v

approach is that it guarantees perfect play;
a "winning" position will always be won,
and a drawn position will at least be drawn.
This strategy works admirably for games
such as tictactoe, but most interesting
games are too large to be handled in this
fashion. In chess, for example, de Groot
[DEGR65] has estimated that the number
of positions that could be explored is 38 ~.

The method used in most current game-
playing programs is to approximate the
whole game tree by searching a succession
of fixed-depth trees. Since the search is
truncated before the end of the game is
reached, estimates of the value of the dis-
carded portion of the tree are made by an
evaluation function. Such estimates are in-
herently unreliable, however, since if one
had a perfect evaluation function, there
would be no need to conduct a search at all.
Empirical evidence suggests that for most
common games, the deeper the search, the
higher the quality of the play. The alpha-
beta pruning algorithm is one technique
for increasing the speed of minimax search.
Alpha-beta is able to avoid searching sub-
trees that are judged not relevant to the
outcome of the search, while always pro-

ducing the same result as minimax. A com-
plete description of the minimax and alpha-
beta algorithms can be found elsewhere
[KNUT75, Nms80]; our own summary of
them, along with a programming example,
appears in the next section.

In this paper we assess the effectiveness
of various refinements to the alpha-beta
algorithm, especially with regard to their
importance in searching trees whose
branches are ordered to favor early detec-
tion of the ultimate solution. Most theoret-
ical work on both sequential and parallel
game-tree searching has been primarily
concerned with random trees [FULL73,
KSUT75, BAUD78], although there is one
major exception [NEWB77]. In practice,
truly random trees are quite uncommon,
and so, under reasonable assumptions, im-
provements to the searching algorithm are
possible. Also, these game tree problems
may be partitioned in a number of different
ways to facilitate parallel solution. We com-
pare various ways of doing parallel alpha-
beta searches and present algorithms that
attempt to take advantage of the charac-
teristics of strongly ordered trees. The ra-
tionale for this work is that well-ordered
trees are not only more realistic, but possess
properties that can be exploited in a parallel
environment. General information about
processor selection and communication is
not presented here, since it is commonly
available elsewhere [WEIT80, ENSL74].

1. SEQUENTIAL SEARCH ALGORITHMS

Given a positionp in a two-person zero-sum
game, all the potential continuations from
p can be represented as a game tree, with
nodes corresponding to positions and
branches to moves. Leaves of the tree are
called terminal nodes, and are assigned val-
ues by the evaluation function. All remain-
ing nodes are classified as nonterminal.
The task in searching a game tree is to
determine the minimax value of the root
node p. Intuitively, the minimax value of a
node is the best value attainable from that
node against an opponent who uses a simi-
lar technique to select his best moves.

The minimax algorithm assumes that
there are two players, called Max and Min,
and it assigns a value to every node in a

Computing Surveys, Vol. 14, No. 4, December 1982

Parallel Search of Strongly Ordered Game Trees • 535

f u n c t i o n a i p h a b e t a (p : p o s i t i o n ; a lpha , be ta , dep th : i n t e g e r) : i n t e g e r ;
VAR w i d t h , scope, i , va l ue : i n t e g e r ;

BEGIN
IF (depth $ O) THEN

r e t u r n (e v a l u a t e (p)) ;

w i d t h := g e n e r a t e (p) ;

IF (w i d t h = O) THEN
r e t u r n (e v a l u a t e (p)) ;

score := a lpha ;

{ a t e r m i n a l node? }

{ d e t e r m i n e successor p o s i t i o n s }
{ p.1 . . p .w and r e t u r n number o f }
{ successors as f u n c t i o n va lue }

{ no l ega l moves? }

FOR i := 1 TO w i d t h DO BEGIN
m a k e (p . i) ;
va lue := - a l p h a b e t a (p . i , - b e t a , - s c o r e , d e p t h - I) ;
u n d o (p . i) ;

IF (va lue > score) THEN
score := v a l u e ;

IF (score Z be ta) THEN
r e t u r n (s c o P e) ;

END;
r e t u r n (s c o P e) ;

END;

{ an improvement? }

{ a c u t o f f ? }

Figure 1. Negamax version of the depth-limited alphabeta function.

game tree (and in particular to the root) as
follows. Terminal nodes are assigned values
that represent the desirability of the posi-
tion from Max's point of view. Nonterminal
nodes are assigned a value recursively. If
Max is to move at a given nonterminal
node, its value is the maximum over the
values of its successors. Similarly, if it is
Min's move, he will choose the minimum
over the values of the successors.

The alpha-beta algorithm produces the
same result as minimax, but at reduced
cost. Typical usage of the alpha-beta algo-
rithm involves a function call of the form

V := alphabeta (p, alpha, beta, depth);

where p represents a position, {alpha, beta)
represents the search window or range of
values (the bounds) over which the search
is to be made, and depth represents the
intended length of the search path meas-
ured in ply (i.e., moves). Typically, p is a
pointer to a data structure that describes
the state of the game at this node. The
exact nature of the structure is very imple-
mentation dependent. The value returned
by the function, V, is the minimax value for
the position p. Figure 1 illustrates a
"negamax" [KNUT75] version of the depth-
limited alpha-beta algorithm. Use of the
negamax framework is particularly attrac-
tive since, by maximizing over the negative
of the values returned by the search,
one avoids the need to select the correct

maximum/minimum operation. Our vari-
ous program excerpts are presented in a
PASCAL-like language, extended with the
return statement for function termination.

Although the alpha-beta function only
returns one value, it is also necessary to
keep track of the optimal move in position
p. This is a simple matter, but is not illus-
trated in Figure 1 in order to keep the
structure of the program as simple as pos-
sible. Note also that our version of alpha-
beta includes the functions evaluate, to as-
sess a terminal node, and generate, to pro-
duce p.1 through p.w, pointers to the im-
mediate successors of position p. Details
about the maintenance of these successors
have been omitted, although functions
make and undo are included to play and
retract the current move. Also, evaluate is
usually complex, because the whole quality
of the play hinges on the assesment made
here [SLAT77]. Since the majority of the
nodes in the tree are terminal, the function
must not be too time consuming. Neverthe-
less, in chess programs evaluate often ex-
tends the search using moves that are se-
lected from captures and certain checks.
This is done to ensure that only quiescent
positions are evaluated.

For purposes of analysis, it is convenient
to study the performance of the minimax
and alpha-beta algorithms on uniform trees
of depth D and constant width W. It is also
usual to measure the relative efficiency of

Computing Surveys, Vol. 14, No. 4, December 1982

536 T. A. Marsland and M. Campbell

 113
7 5 3 3 2 1 0 6 8 1 4 0 7 s 8 1 1 0 1 ~ ½ ~

Figure 2. Minimax tree showing alpha-beta cutoffs.

tree-searching algorithms in terms of the
number of terminal nodes evaluated. The
minimax algorithm will always examine
M(W, D) ffi W D terminal nodes, while at
best the alpha-beta algorithm evaluates
only [SLAG69]

B(W, D) ffi W w/21 + W tD/2j - I nodes

where rx] and LxJ represent upper and
lower integer bounds on x• Thus the effi-
ciency of the alpha-beta algorithm can be
very good, potentially visiting as few as two
times the square root of the maximum num-
ber of nodes, while still generating the same
solution path (the principal variation)
from the root node. However, this optimal
performance is achieved only when the first
move considered at each node is the best
one. That alpha-beta is effective in reduc-
ing the number of terminal nodes evaluated
is clear from a study of the sample uniform
tree (width ffi 3 and depth ffi 3) shown in
Figure 2• The numbers at the terminal
nodes would be produced by an evaluation
function. The other numbers are the values
of the individual subtrees, as passed back
(backed up) to the root node by the alpha-
beta algorithm. Thus the minimax value of
this tree is 3, and only 16 terminal nodes
would be visited, as shown by the solid
lines, rather than 27, as would be the case
for an exhaustive search. The dotted
branches of the tree are said to have been
cut off or pruned by the alpha-beta algo-
rithm.

For the purposes of this paper more re-
alistic assumptions are needed. A random
uniform game tree will be defined to be one
in which the terminal node scores (values
of nodes at the maximum depth in the tree)
are uniformly distributed across some fLxed
range of value. Also, trees are defined to be

strongly ordered if

(1) 70 percent of the time the first branch
from each node is best;

(2) 90 percent of the time the best move is
in the first quarter of the branches
being searched.

Although these numbers may appear to be
rather arbitrary, it turns out that static
ordering mechanisms, when combined with
heuristic methods and memo functions
[BIRD80], tend to produce trees with these
properties [GILL78, MARS74]. Thus for each
variation of the alpha-beta algorithm we
can define the following quantities:

R (W , D) ffi average number of terminal
nodes visited in a search of a
random uniform game tree;

S (W , D) ffi average number of terminal
nodes visited in a search of a
strongly ordered uniform game
tree•

At each terminal node visited during the
search the evaluation function is invoked
to assess the position.

While the performance of alpha-beta on
random trees has a solid theoretical basis
[FULL73, BAUD78], at present only empiri-
cal data are available for strongly ordered
trees [GRIF76]. Nevertheless, statistical ev-
idence supports the relationship

B(W, D) < S(W, D) < R(W, D)

<< M(W, D) ffi W D.

Relative values for these terms can be seen
from our Monte Carlo simulation results,
presented in Table 1. These results were
obtained from trees of depth 4 or less, and
terminal node scores were chosen from the
range 0-127. To estimate R, the values were

Computing Surveys, Vol. 14, No. 4, December 1982

Parallel Search of Strongly Ordered Game Trees

Table 1. Expected Search Costs for Trees (m Number
of Terminal Nodes Visited)

Width Best S-Strong R-Random Minimax

Depth= 3
8 71 105 (21) 181 (36) 512

16 271 405 (64) 786 (114) 4096
24 599 857 (115) 1752 (250) 13824

Depth= 4
8 127 281 (88) 690 (153) 4096

14 511 1286 (430) 4125 (875) 65536
24 1151 2946 (1013) 10425 (1891) 331776

• 537

assigned randomly to the terminal nodes.
Because of the way the scores were chosen,
they were not all unique and distinct, and
so R is slightly underestimated. The calcu-
lation of S, on the other hand, relied on the
use of a distribution function at the termi-
nal nodes, to ensure that the best move met
our strong ordering criteria. The parenthe-
sized numbers represent the standard de-
viation for 100 independent search trials.
Therefore Table 1 illustrates the relative
efficiency of alpha-beta under best, strong,
random, and worst move ordering assump-
tions, and supports the view that R(W, D)
is very much less than M(W, D).

2. ENHANCEMENTS TO ALPHA-BETA
SEARCHING

Many of the following techniques have
been developed in efficiency-conscious
chess programs, but ones that discard
moves only at the terminal nodes. These
programs are often called full-width pro-
grams because they examine all necessary
moves at every node, employing "forward
pruning" only at the terminal nodes to elim-
inate the quiescent moves. Even so, the
basic methods are applicable to most pro-
grams that search game trees.

2.1 Aspiration Search

The interval enclosed by alpha and beta is
referred to as the window. For the alpha-
beta algorithm to be effective, the minimax
value of the root position must lie within
the initial window. Generally speaking, the
narrower the initial window, the better is
the algorithm's performance. In many prob-
lem domains, including chess, there are re-

liable methods to estimate the value that
will be returned by the search. Thus, in-
stead of using an initial window of (- INF,
+INF)--where INF is a number larger than
any that evaluate will return--one can use
(V - e, V + e), where V is the estimated
value and e the expected error. There are
three possible outcomes of this so-called
aspiration search, depending on V*, the
actual minimax value of a positionp. Since
V* is in the range - I N F < V* < +INF, one
of the following conditions is true:

(1) If V* <__ V - e,
then alphabeta(p, V - e, V + e, D)

- - V - e .
(2) I f V * > _ V + e ,

then alphabeta(p, V - e, V + e, D)
~ V + e .

(3) I f V - e < V * < V + e ,
then alphabeta(p, V - e, V + e, D)

Cases I and 2 are referred to as failing low
and failing high, respectively [FISHS0].
Only in Case 3 is the true value of the
position p found. In this case the search
time will not be greater than that for a full
window search, and cannot be less than
that for an optimal search. In the failing
low case, it is necessary for the search to
show that every alternative from the root
is less than V - e. Thus, assuming a per-
fectly ordered tree of width W and depth
D,

W [D/21 nodes must be examined.

Conversely, in the failing high case the
search stops as soon as an alternative is
found which is greater than V + e. Again,

Computing Surveys, Vol. 14~ 1"4o.'4~ December 1982

538 • T. A. Marsland and M. Campbell

{ Assume V = est imated va lue of p o s i t i o n p, and
• = expected e r r o r l i m i t }

alpha := V - e;
beta := V + e;

V := a lphabeta (p , a lpha, beta , depth) ;
IF (V ~ beta) THEN { f a i l i n g h igh }

V := a lphabeta (p , beta , +INF, depth)
ELSE
IF (V ~ alpha) THEN { f a i l i ng low }

V := a]phabeta(p, -INF, alpha, depth);

} a r r i v e here a f t e r success fu l search

F i g u r e 3. Aspiration alpha-beta search.

under perfect ordering conditions, only

W LD/2j nodes need be examined.

Either way the search must be repeated. As
illustrated in Figure 3,

V :ffi alphabeta(p, beta, +INF, D);

must be invoked for the failing high case.
Empirical evidence has shown aspiration
searches to be very effective; in TECH, 1
search time reductions averaging 23 percent
were noted [GmL78]. This figure was con-
firmed by Baudet by adapting his results
for parallel tree search to the sequential
c a s e [BAUD78] .

Falphabeta, for "fail-soft alphabeta"
[FISH80], is useful when aspiration search-
ing is employed. Falphabeta is produced
through two modifications to the alpha-
beta function of Figure 1. The recursive call
becomes

value :ffi -falphabeta(p.i, -beta,
-max(alpha, score), depth -1);

and score is initialized to - INF , rather than
alpha. The function f a l phabe ta gives a
tighter bound on the true value of the tree
when the search fails high or low, and does
so while searching the same nodes as alpha-
beta [FISH80]. Although falphabeta re-
quires a slightly larger overhead, any sys-
tem that uses aspiration searches should
find the technique practical, even though
the actual savings may be small, since

1 All footnotes in this paper refer to chess programs.
TECH was formulated by J. GiUogly, Carnegie-Mel-
lon University. Further details concerning some of
these programs can be found m More Chess and
Computers, by D. Levy and M. Newborn, Computer
Science Press, Rockville, Md., 1982.

the next iteration may start with a better
window.

2.2 Transposition Table

In carrying out a game tree search it is not
uncommon for positions to recur in numer-
ous places throughout the tree. Rather than
reevaluate these positions, it may be possi-
ble simply to retrieve the equivalent search
result from a large hash table [SORE78]
whose entries represent positions. For game
modeling, nearly perfect hashing functions
can be produced. Although there are some
table management problems that must be
solved, the technique has very low over-
head and large potential gains.

A typical hash index generation method
is the one proposed by Zobrist [ZOBR70],
and an illustration of its application to
chess can be found in a paper by Marsland
and Campbell [MARs81]. A transposition
table entry could have the components
shown in Table 2.

For best effect the transposition table
must be incorporated into alpha-beta care-
fully, as shown in Figure 4. Note that our
implementation employs two functions,
store and retrieve, to perform transposition
table access, but details have not been in-
cluded. In addition, functions make and
undo, to play and retract moves, are omit-
ted. When a position reached during a
search is located in the table (i.e., the lock
matches), there are two possibilities, de-
pending on whether length is smaller than
the remaining depth to be searched. If pos-
sible, score is used to reduce the size of the
current alpha-beta window, unless length
is less than the depth of search. In any case,
move must be tried immediately, since if it

Computing Surveys, Vol. 14, No. 4, December 1982

Parallel Search of Strongly Ordered Game Trees * 539

Table 2. Components of a M,n=mal Transpos=t,on
Table Entry

Ilockl move Iscorel nag I,en h[pr,o I

lock Is used to check that the table entry corre-
sponds to the desired tree positron;

m o v e is the best move in the positron, as determmed
by a prewous search;

score is the value of the subtree as computed previ-
ously;

f l a g indicates whether score is an upper bound, lower
bound, or a true value,

l e n g t h is the height of the subtree upon whmh score
is based;

p r m is used m table management, to select entries
for deletmn.

again causes a cutoff, it will save an expen-
sive move generation (Figure 4).

Other possibilities for a transposition ta-
ble entry also exist. For example, DUCH-
ESS 2 maintains both upper and lower
bounds on the position score, with separate
lengths for each [TRus81], thus improving
the possibility that one of the bounds may
be used to reduce the window size.

Transposition tables are most effective in
chess end games, where there are fewer
pieces and more reversible moves. CHESS
4.73 was the first to demonstrate searches
of more than 25 ply in certain types of King
and Pawn endings; by taking advantage of
this knowledge, gains of a factor of 5 or
more are typical [SLAT77]. Even in complex
middle games, however, significant (25-50
percent) performance improvement has
been observed [THOM81]. Furthermore, if
the actual length of the subtree whose re-
sult is retrieved from the transposition table
is greater than the specified search depth
of the current variation, then the effective
length of the search for this variation is
greater than the maximum specified depth,
and so the equivalent of an extended search
is done. Also, successful use of the trans-
position table makes the tree more strongly
ordered. Thus search times shorter than
those for optimal alpha-beta are possible,
since some subtrees need not be reeval-
uated.

2DUCHESS was formulated by T. Trnscott, B.
Wright, and E. Jensen, Duke Umverslty.
3CHESS was formulated by D. Slate, and L. Atkin,
Northwestern Umversity

2.3 Killer Heuristic

The killer heuristic is based on the premise
that if move My refutes move blx, it is more
likely that My (the killer) will be effective
in other positions [GREE67]. Any move that
causes a cutoff at level N in the tree is said
to have refuted the move at level N - 1
[CIcH73]. A node is at level N in the tree if
it is N ply from the root node. There are
many ways of using this information. For
example, the program CHESS 4.7 main-
tains a short list of "killers" at each level in
the tree, and attempts to apply them early
in the search in the hope of producing a
quick cutoff. A further advantage of the
killer heuristic is that it tends to increase
the usefulness of the transposition table.
By continually trying the same killer
moves, there is a greater possibility of
reaching a position already in the table
[TRus81], and thus reducing the time spent
searching the tree.

In its full generality, the killer heuristic
can be used to dynamically reorder moves
as the search progresses. For example, if a
move My at level N refutes a move at level
N - 1, then it is worth trying My at level
N - 2, if it exists, before generating all the
moves for that position and trying them in
order [NEWB79]. An additional method,
used by AWIT, 4 seeks out defensive moves
at ply N - 1, which counteract killers from
level N. The idea behind the generalized
killer heuristic mechanism is to allow infor-
mation gathered deep in the tree to be
redistributed to shallower levels. This is not
usually done by the full-width programs,
since it is not clear that the potential gains
exceed the overhead. The actual search
reductions produced by the killer heuristic
cannot be stated with certainty. Even
though use of the killer heuristic did not
yield improvements for TECH [GILL78],
variations of this method were used in
CHESS 4.7, DUCHESS, OSTRICH, 5 and
BLITZ, 6 and were found to be effective.

4 AWIT was formulated by T. A. Marsland, University
of Alberta.
5 OSTRICH was formulated by M. Newborn, McGill
University.
6 BLITZ was formulated by R. Hyatt and A. Gower,
University of Southern Mississippi.

Computing Surveys, Vol. 14, No. 4, December 1982

540 • T . A . M a r s l a n d and M. Campbel l

func t ion AB(p : p o s i t i o n ; alpha, beta, depth : in teger) : in teger ;
VAR i , va lue, width, length, score, f l ag : in teger ;

p .opt : pos i t i on ;
BEGIN

r e t r i e v e (p , length, score, f l ag , p .op t) ;

{ length is the e f f e c t i v e subtree he igh t .
length < 0 - p o s i t i o n not in tab le .
length 2 0 - p o s i t i o n in tab le .

}
IF (length ~ depth) THEN BEGIN

IF (f l ag = VALID) THEN re tu rn (score) ;
IF (f l a g = LBOUND) THEN

alpha := max(alpha, score);
IF (f l ag = UBOUND) THEN

beta := min(beta, score);
IF (alpha ~ beta) THEN re tu rn (score) ;

END;
{ Note b e n e f i c i a l update of alpha or beta bound

assumes f u l l width search.
Score in tab le i n s u f f i c i e n t to terminate search
so cont inue as usual, but t r y p .opt (from tab le)
before generat ing other moves.

}

IF (depth ~ O) THEN { terminal node? }
r e t u r n (e v a l u a t e (p)) ;

IF (length ~ O) THEN BEGIN
score := -AB(p.opt, -beta, -alpha, d e p t h - I) ;
IF (score ~ beta) THEN goto done;

END
ELSE score := -INF;

{ No c u t o f f , generate moves }
width := generate(p) ;
IF (width = O) THEN { mate or stalemate? }

r e t u r n (e v a l u a t e (p)) ;

FOR i := I TO width DO BEGIN
value := -AB(p.i, -beta, -max(alpha,score), depth- l) ;
IF (value > score) THEN BEGIN

score := va lue;
p .opt := p . i ; { note best successor }
IF (score ~ beta) THEN goto done;

END;
END;

done:
f l a g := VALID;
IF ~score ~ alpha) THEN f l ag := UBOUND;
IF (score ~ beta) THEN f l ag := LBOUND;
IF (length S depth) THEN

store(p , depth, score, f l ag , p .op t) ;
re tu rn (score) ;

END;

Figure 4. Alpha-beta implementation using a transposition table.

2.4 IteraUve Deepening

I te ra t ive deepening refers to the process of
using a (D - 1) ply search to p repare for a
D ply search. T h a t is, af ter a (D - 1) ply
search one can re ta in the moves of the
principal var ia t ion and use t h e m as an ini-
tial sequence of moves for a D ply search
[SLAT77]. T h e cost of i terat ive search
(again measured in t e rms of the n u m b e r of

te rminal nodes visited) is given by a recur-
rence relat ion of the fo rm

S (W , D) = S (W , D - 1) + F{W, D),

where F (W, D) is the expected cost of an
a l p h a - b e t a search given the first D - 1
moves of the principal variat ion, and W
is the search width. T h e exact na ture of
F (W , D) is no t known, bu t it has been

Computing Surveys, Vol. 14, No. 4, December 1982

Parallel Search of Strongly Ordered Game Trees

V := O;
FOR D := 1 TO dep th DO BEGIN

a lpha := V - e;
b e t a := V + e;
V := f a l p h a b e t a (p , a l p h a , b e t a , D);

IF (V Z b e t a) THEN
V := f a l p h a b e t a (p , V, +INF, D)

ELSE
IF (V ~ a]pha) THEN

V := f a] p h a b e t a (p , - INF, V, D);

s o r t (p) ; { bes t move so f a r i s t r i e d f i r s t
on n e x t i t e r a t i o n . }

END;

Figure 5. Iterative deepening with aspiration search.

• 541

hypothesized for chess programs that em-
ploy transposition tables [MARS81]

F(W, D) = B(W, D)

+ (W - 1) * B (W - 1, D - 2)

for the cases W > 20 with D > 4.
Iterative deepening can be used to advan-

tage in the following ways:

(1) It can be used as a method for control-
ling the time spent in a search. In the
simplest case, new iterations can be
tried until a preset time threshold is
passed.

(2) A (D - 1) ply search can provide a
principal variation, which, with high
probability, contains a prefix of the D
ply principal variation. This allows the
alpha-beta search to proceed more
quickly.

(3) The value returned from a (D - 1) ply
search can be used as the center of an
(aspiration) alpha-beta window for the
D ply search (Figure 5). It is probable
that this window will also contain the
value for the current search, thus re-
ducing search time.

These last two points, though significant,
are not really complete justifications for the
use of iterative deepening. In fact, in exper-
iments with checkers game trees [FISH80],
it was found that iterative deepening in-
creased the number of nodes searched by
20 percent (apparently only using Point (2),
however). In addition, studies with TECH
using a generalized version of (2), but not
(3), noted a 5 percent increase in search
times when iterative deepening was applied
[GILL78]. It appears that a strong initial

move ordering, together with a good alpha-
beta window estimate, can approximately
match the advantages of iterative deepen-
ing. The real searching advantage of itera-
tive deepening, however, is that

(4) The transposition table and killer lists
are filled with useful values and moves.

As a consequence, the search may proceed
more quickly since the table entries and
killer lists tend to direct the search along
lines that are sufficiently good to cause
immediate cutoffs.

The importance of transposition tables
is illustrated by the performance of the
BELLE 7 chess machine [CoNy82]. Typical
chess middle-game positions have branch-
ing factors of 35-40. It has been found that
in such positions, it normally costs BELLE
a factor of between 5 and 6 to go one further
ply, in fact, slightly less than the expected
cost of optimal alpha-beta [THOM81]. Ex-
actly how much each additional ply im-
proves the performance of a program has
recently been quantified by Thompson
[THoM82]. This was done by playing a se-
ries of matches between (D + 1) ply and D
ply versions of BELLE, for all values of D
from 3 to 8.

An alternative form of iterative deepen-
ing, one that is especially appropriate if
transposition tables are not used, was em-
ployed by L'EXCENTRIQUE. s A 2 or 4 ply
minimax search was first performed to ob-
tain W minimax move pairs (move and best

7 BELLE was formulated by K. Thompson and J.
Condon, Bell Telephone Laboratories.
8 L 'EXCENTRIQUE was formulated by C. Jarry, CIP
Inc., Sun Life Building, Montreal.

Computing Surveys, "Col. 14, No. 4, December 1982

542 • T. A. Marsland and M. Campbell

func t ion PVS(p : p o s i t i o n ; depth : in teger) : in teger ;
VAR width, score, i , va lue : i n teger ;

BEGIN
IF (depth ~ O) THEN

r e t u r n (e v a l u a t e (p)) ;
width := generate(p) ;
IF (width = O) THEN

r e t u r n (e v a l u a t e (p)) ;
score := -PVS(p.1, dep th - I) ;
FOR i := 2 TO width DO BEGIN

value := - f a l p h a b e t a (p . i , - sco re - I , -score, dep th - I) ;
IF (value > score) THEN

score := - f a l p h a b e t a (p . i , -INF, -va lue, dep th - I) ;
END;
re tu rn (score) ;

END;

Figure 6. Minimal window search.

refutation). These were then sorted and a
6, 8, 10, . . . ply iterative deepening cycle
initiated. The rationale behind 2 ply incre-
ments is to preserve a consistent theme
between interations, so that the principal
variation will not flip-flop between attack-
ing and defensive lines. To our knowledge,
no comparison between this and conven-
tional iterative deepening has been done.
Likewise, no quantitative study of the ad-
vantages of minimax move pairs over con-
ventional alpha-beta move pairs {move and
sufficient refutation) seems to have been
done. In either case, this refutation table
usage is a valuable way of guiding the
search, since the storage requirement is
only W* D (width * depth) entries. For
each variation at the next iteration, the
corresponding sequence of moves in the
refutation table is tried first. Often these
sequences will be sufficient to cut off the
search, thus reducing the number of nec-
essary move generations. In our experience
with chess programs, use of a refutation
table to seed the variations often improves
iterative deepening searches by 30 percent.

2.5 Other Searching Techniques

A number of modifications to the alpha-
beta algorithm have been proposed. They
are examined here mainly for compatibility
with the other search enhancements dis-
cussed.

An interesting implementation of the al-
pha-beta algorithm treats the first varia-
tion in a special way. The method was
originally called Palphabeta [FISH80] and
then renamed Calphabeta [FmHS1], but

will be referred to here as principal varia-
tion search or PVS for short. Once a can-
didate principal variation is obtained, the
balance of the tree is searched with a min-
imal window, an alpha-beta window of
(-score - 1, -score), where score is the
best value found so far (Figure 6). On the
other hand, if the tree is poorly ordered,
each subtree that is better than its elder
siblings must be searched again. Hence
there is some risk that PVS will examine
more nodes than alpha-beta. When itera-
tive deepening is used to provide a principal
variation, PVS becomes more effective, be-
cause with each iteration it is increasingly
likely that the first move tried is best. The
structure of PVS can be seen in Figure 6,
which includes an alpha-beta refinement,
falphabeta, to enable use of a narrower
window whenever the minimal window
search fails. For simplicity, make and undo
are again omitted.

The basic idea behind PVS is that it will
assume that the first move made at each
node is best. Thus PVS makes a recursive
call to the first successor, p.1, and deter-
mines its value. The remaining successors,
p.i for 2 _< i _< width, are examined in turn.
If one of these successors has a value that
is greater than that for the current principal
variation, it becomes the new principal var-
iation, and is searched again with the cor-
rect window. It is possible that PVS can
also benefit from some form of aspiration
search, but to our knowledge that has not
yet been accomplished. Even so, our expe-
rience with PVS suggests that a 13 percent
improvement in speed over an aspiration
search may be expected. One practical ob-

Computing Surveys, Vol. 14, No. 4. December 1982

Parallel Search of Strongly Ordered Game Trees • 543

servation about the operation of the mini-
mal window search has been made, namely,
after a failing-high minimal window search
at the first level in the tree, there is no need
to follow immediately with a full window
search [THEM81]. Since we now have a new
bound on the minimax value, only if an
even more successful variation arises will
there be any doubt about which one might
be the new principal variation. This refine-
ment has been tested in the BELLE pro-
gram, and search time reductions of up to
50 percent have been noted.

SCOUT [PEAR80] is a further generali-
zation of PVS, in which the final call to
falphabeta is replaced by

score := -PVS(p.i, depth - 1);

In its original form, SCOUT did not use the
minimal window idea, but rather an equiv-
alent test procedure. Initial simulation re-
sults indicate that PVS is slightly better
than SCOUT on strongly ordered trees
[CAMPS3].

Even though SSS* [STOc79] and staged
SSS* [CAMP83] are effective in the search
of random or poorly ordered trees, these
algorithms are not significantly better than
alpha-beta on strongly ordered trees, and
require more time and space. We do not
consider further those methods that are not
especially suited to the search of strongly
ordered trees.

APPROACHES TO PARALLEL TREE
SEARCH

The best way to make Kprocessors perform
an alpha-beta search on a tree is not
known. Generally, a K-fold increase in com-
puting power is not possible because some
intercommunication between processors is
necessary, causing losses as they wait for
these messages. More important, if inde-
pendent subtrees are searched concur-
rently, it is likely that redundant nodes will
be examined, because the best bounds are
not always available. In spite of these prob-
lems, some processor configurations yield
substantially higher effective computing
power than others.

3.1 Parallel Evaluation

Current game-playing programs that carry
out full-width searches must come to terms

with the trade-off between depth of search
and complexity of terminal node evalua-
tion. Most of the stronger chess programs
employ a rather simplistic scoring (evalua-
tion) function, in order to make time for
deeper searches. Nevertheless, a consider-
able portion of the search time is spent in
evaluation: on the order of 40 percent in
both BLITZ and DUCHESS.

An obvious application of concurrency to
game tree search appears to be within the
scoring function itselt~ A number of pro-
cessors could be used to evaluate simulta-
neously different terms in the scoring func-
tion, which could be combined to form an
overall evaluation of the position. This
method is used to a limited extent in the
chess machine BEBE. 9

Advantages of this technique are numer-
ous:

(1) Evaluation time can be reduced, allow-
ing deeper searches.

(2) Many small, cheap processors can be
used to evaluate individual features in
a position.

(3) Since there is no obvious limit to the
amount of concurrency possible, the
evaluation function can be considerably
more complex: large amounts of game-
specific knowledge can be utilized, and
extended arbitrarily.

Admittedly a large proportion of terminal
nodes in a full-width search, about 50 per-
cent in CHESS 4.7, need nothing more than
a count of the pieces held by each side
[SLAT77]. Nevertheless, applying concur-
rency to the evaluation function, as de-
scribed above, can improve positional un-
derstanding in the remainder. It is these
positional factors that are so expensive,
and, by this technique, can be computed
concurrently with material evaluation and
each other.

Another method, employed by BELLE
and to a lesser extent by BEBE, is to par-
tition the board and to apply a micro-
processor to the maintenance of the data
structure associated with each square. Ul-
timately one could envision an evaluation
machine that would consist of a processor

9 BEBE was formulated by T. Scherzer, SYS-10 Inc.,
Chicago.

Computing Surveys, Vol. 14, No. 4, December 1982

544 • T. A. Marsland and M. Campbell

hierarchy. For example, bottom-level proc-
essors would assess primitive board fea-
tures, passing the values to higher level
processors, which would combine the fea-
tures in various (not necessarily linear)
ways to form more complex features. The
machine could also have the ability to re-
turn from a terminal search with an indi-
cation that the position is too unstable to
assess reliably. While it is too early to say
how far one can successfully pursue this
approach in practice, it is clear that there
are many opportunities for experimental
and theoretical work.

3.2 Parallel Aspiration

Even though the alpha-beta search itself is
relatively efficient, the aspiration refine-
ment provides improvement whenever it is
successful. One parallel implementation of
this idea is to divide the alpha-beta window
into nonoverlapping subintervals and apply
a processor to each range [BAUD78]. For
example, take

Processor 1 (- INF, V - e)
Processor 2 (V - e, V + e)
Processor 3 (V + e, +INF).

Ideally Processor 2 will finish first, but, in
any case, one of them will succeed, and will
do so in less time than a uniprocessor
searching over (- INF, +INF). Those proc-
essors that fail early can cut off or improve
the bounds for others. Baudet [BAUD78]
has explored optimal ways of decomposing
windows, including in his exposition meth-
ods that do not initially cover (- INF,
+INF).

There are two important results from this
parallel aspiration work:

(1) Maximum expected speedup is typi-
cally a factor of 5 or 6, regardless of the
number processors available. This is
because the cost of an aspiration search
is bounded below by B(W, D).

(2) When the number of processors (K)
is small (K = 2 or 3), the speedup
obtained may be greater than K
[BAUD78].

These results are based on certain assump-
tions; in particular, it is assumed that the

distribution of the backed-up value is
known. The implications for parallel search
of strongly ordered trees are not clear, but
since the sequential version of the aspira-
tion search is so effective for chess game
trees, one cannot expect the parallel aspi-
ration methods to offer much improvement.

3.3 Tree Decomposition

Most discussions of parallel game tree
search have concentrated on concurrent ex-
amination of independent subtrees. Al-
though there are a number of overheads
involved in concurrent search of different
subtrees, they can be divided into two
broad categories, search overhead and com-
munication overhead. Even Baudet con-
cludes that parallel aspiration searching
must be combined with tree decomposition
if large performance improvements are de-
sired [BAUD78].

The efficiency of most search algorithms
arises from the fact that decisions to cut off
search on given subtrees are based on all
the accumulated information obtained to
that point in the search. For various rea-
sons, this information is not always avail-
able to parallel search algorithms. Com-
munication delays may make the data ar-
rive too late or, more important, informa-
tion may not yet be available as it is being
calculated by another concurrent search.
The extra effort that a given parallel algo-
rithm must carry out (relative to the se-
quential algorithm) can be defined as the
search overhead.

Communication overhead can arise in
different ways, depending on the system
configuration. Information can be ex-
changed via some sort of message-passing
system, or through a globally shared data
structure. The former incurs message-pass-
ing costs, whereas the latter requires syn-
chronization overhead if high degrees of
concurrency are to be achieved. Of course,
the volume of information to be shared is
dependent upon the particular search al-
gorithm used, but it seems clear that, in
general, communication overhead is in-
versely related to search overhead. In other
words, if improved sharing of data between
independent searches is achieved (at in-
creased communication costs}, better cutoff

Computing Surveys, VoL 14, No. 4, December 1982

Parallel Search of Strongly Ordered Game Trees

Black p o s i t i o n s White p o s i t i o n s

I I

545

P0

Ec2 ~C3

Figure 7. Transposition table access and management.

decisions can be made by the search algo-
rithm, thus reducing search overhead.

3.4 Enhancements to Parallel Search

Before considering newer search algo-
rithms, the sequential search enhance-
ments will be assessed to determine their
effectiveness in a parallel situation.

Aspiration searching in parallel offers no
particular advantage, since a single proces-
sor employing a good initial window will do
just as well. However, the sequential ver-
sion of aspiration searching, when used in
conjunction with iterative deepening, is
equally, if not more, applicable to parallel
systems, since a common problem of such
systems concerns their inappropriately
wide windows.

Transposition tables continue to be effec-
tive, provided that all the processors access
the same table. Since transposition table
usage is a naturally autonomous function,
it is an especially attractive parallel appli-
cation. Furthermore, a processor can do
something useful while waiting for access
to the transposition table, namely, evaluate
the next subtree. If the position sought is
not in the table, then no time is lost; other-
wise, the first result from either the tree
recomputation or the table access is used.

Access delays to the transposition table
can be reduced by dividing the table into
ranges and providing a different processor
for each partition. In any case, the table
naturally splits itself into two portions,

those positions for white to move and those
for black (Figure 7). This scheme is quite
independent of the relationships between
the game processors, (71, C~, and C3, which
share and provide updates for the transpo-
sition table memory. The game processors
place their transposition requests with a
manager, Po. A potential bottleneck exists
there, but this should not be severe since
Po has no significant computational func-
tions beyond those necessary for the rout-
ing operations.

The killer heuristic presents problems
similar to the transposition table. The killer
list of moves that have been effective in
comparable positions is so small, however,
that the management problems are much
reduced.

The other alpha-beta modifications are
relatively unaffected by parallelism. Fal-
phabeta proceeds identically, with similar
advantages to those found in sequential
systems. PVS restricts the method of ap-
plication of parallelism to the tree, to en-
sure the correct minimal windows can be
found, but these restrictions are not neces-
sarily deleterious.

4. TREE DECOMPOSITION METHODS

4.1 Naive Approach

With a static decomposition, the game tree
is split into groups of subtrees, and each
subtree is assigned to a different processor
(Figure 8). As processors complete, they are

Computing $urveys, Vol. 14, No. 4, December 1982

546 T. A. Marsland and M. Campbell

Root Posi t i on

I
I I I
P1 P2 . . . PK

move move move
1 2 K

move
K+I

Figure 8. Apply all K processors at the ELrst level

move
w

7 5 3 3 5 2 1 0 5 3 1

I

I I l l l

Figure 9. Necessary tree searched during the first phase

allocated to the next group of subtrees, until '
the full tree is evaluated. Ideally each proc-
essor should be given exactly the same size
of subtree to search, in order that all may
complete at about the same time. Even so,
the efficiency of this method is very sensi-
tive to the width/processor ratio W/K.

More important, for a typical game tree
with W-- 40, a direct alpha-beta search is
equivalent to an exhaustive search of a tree
with W = 7 [GILL72]. Thus, if K - - 40
processors are applied at the root of the
tree, the average speedup over a uniproces-
sot employing alpha-beta would be only 7.
Note that the most serious disadvantage
with this scheme is that the processors
share alpha-beta values in a very limited
way.

4.2 Minimal Tree

The minimal tree that must be searched by
the sequential version of the alpha-beta
algorithm has a very definite structure. It
has been proposed that these subtrees be
searched independently and concurrently
as the first stage of a parallel algorithm
[AKL82]. Akl's method uses the alpha-beta
window generated by the first phase to
speed a second phase, where an independ-
ent parallel search of the remaining sub-

trees takes place. To simplify the descrip-
tion, the following terminology is used:

The first branch of a node points to the
left son, and is contained in the left sub-
tree. All other branches of the node point
to right sons and are in right subtrees.

Phase 1. Recursively search the left sub-
tree of the root node, and the left subtrees
only of right sons of the root node. At the
end of this phase the left sons will have
been fully evaluated. The right sons will
have temporary values, which are the val-
ues of their left sons. Figure 9 shows the
first phase of a search on a 3 ply tree. The
branches explored are marked with solid
lines and terminal scores.

Phase 2. Those subtrees whose tempo-
rary values are insufficient to cause a cutoff
are now assigned different processors and
searched one branch at a time until all right
sons have been cut off or fully explored.
The second phase of the search is illus-
trated in Figure 10. Again solid lines show
the branches examined during this phase,
single dots show lines never considered, and
double dots show variations completed dur-
ing the first phase. Assuming perfect order-
ing, the search will have cost B(W, D - 1)
+ (W - 1)*B(W, D - 2), where Wis the

Computing Surveys, Vol. 14, No 4, December 1982

Parallel Search of Strongly Ordered Game Trees • 547

I
3 2

5 2 5

II
1 0 1

Figure 10, Balance of the tree searched during the second phase.

width of each node and D the maximum
depth of search.

This model has been simulated for cases
with W _ 20 and trees with random termi-
nal nodes [AKL82]. Although it is not yet
clear how effective an actual implementa-
tion might be, an important point has been
made: certain subtrees must be searched,
no matter what the conditions, and so they
may as well be searched in parallel, al-
though perhaps not with the narrowest pos-
sible bounds that sequential alpha-beta
could supply.

SCOUT can be adapted to a parallel sys-
tem in a similar manner [AKL81]. Simula-
tions indicate that parallel SCOUT is
slightly better than parallel alpha-beta for
strongly ordered trees, but alpha-beta is
better as trees become less ordered.

4.3 Processor Tree Hierarchy

In order to limit interprocessor communi-
cation, one should use simple connection
mechanisms. For example, in the processor
tree of Figure 11 each node in the hierarchy
has a fan-out of 2 and a distinct computa-
tional function. In the simplest case, all
nonterminal nodes of the processor tree
execute a Master algorithm. They receive
a position and an alpha-beta window from
their parent, generate successor positions,
and assign them to child processors. When-
ever a child completes, it returns a value
for its subtree. If this value causes the alpha
bound to change, the master interrupts its
children and forces them to update their
alpha-beta values, using the mechanism of
Figure 12.

The terminal nodes of the processor tree
also receive a position and a window, but
simply execute a Slave algorithm to con-
struct the game tree to its maximum per-

P1

Figure 11.

p P1
P3

p2•_••
P2

P4

Example of processor tree method.

mitted depth, evaluate the terminal nodes,
and return to the master (parent) the best
value for the subtree. This is essentially the
tree-splitting algorithm [FISH80], and is in-
formally presented in Figure 13. The pro-
cessor tree architecture (Figure 11) is well
suited to executing the tree-splitting algo-
rithm. Several constructs have been
adapted from Fishburn's work [FmH81] for
the algorithm presentation in Figure 13, as
follows:

(1) j . t reespl i t is the recursive execution of
t reespl i t on processorfi

(2) parior, a parallel for loop, conceptually
creates a separate process for each it-
eration of the loop. The program con-
tinues as a single process when all it-
erations are complete.

(3) when waits until its associated condi-
tion is true before proceeding with the
body of the statement.

(4) crit ical allows only one process at a
time into a critical region.

(5) procedure terminate kills all processes
in the parfor loop that are still active.

Computing Surveys, VoL 14, No. 4, December 1982

548 T. A. Marsland and M. Campbell

VAR alpha, beta : ARRAY [1..MAXDEPTH] OF i n t e g e r ;
{ a l p h a - b e t a bounds are s to red in g l o b a l t a b l e s
procedure update (dep th , s ide , bound : i n t e g e r) ;
BEGIN

IF (s ide > O) THEN
a l p h a [d e p t h] := max (a lpha [dep th] , bound)

ELSE
b e t a [d e p t h] := m i n (b e t a [d e p t h] , bound);

IF (depth > O) THEN
up,date(depth- I , - s i de , -bound);

END;

Figure 12. Dynamic update of alpha-beta values.

f u n c t i o n t r e e s p l i t (p : p o s i t i o n ; a lpha , be ta : i n t e g e r)
VAR w i d t h , i : i n t e g e r ;

va l ue : ARRAY [1..MAXWIDTH] OF i n t e g e r ;
j : p rocessor ;

BEGIN
IF (I am a l ea f p rocessor) THEN

r e t u r n (a l p h a b e t a (p , a lpha , b e t a)) ;

w id th : : gene ra te (p) ; { de te rm ine successors
{ p.1 . . p.w

p a r f o r i := 1 TO w id th DO BEGIN
when (a s lave j i s i d l e) BEGIN

v a l u e [i] := - j . t r e e s p l i t (p . i , -be ta , - a l p h a) ;
c r i t i c a l BEGIN

IF (v a l u e [i] > a lpha) THEN
alpha := v a l u e [i] ;

END ;
IF (a lpha > be ta) THEN BEGIN

te rmina te () ;
r e t u r n (a l p h a) ;

END ;
END ;

END ;
r e t u r n (a lpha) ;

END;

Figure 13. The tree-splitting algorithm.

: i n t e g e r ;

An important feature of parallel imple-
mentations is dynamic updating of the al-
pha-beta windows, since this speeds the
completion of the child processors. Even
though an inexpensive mechanism for dy-
namically sharing these bounds is available
[FISH80], the processors still spend a large
amount of time computing without their
benefit. Fortunately, the update method is
relatively simple, as shown by the pseudo-
code of Figure 12.

There are a number of refinements to the
processor tree scheme.

(1) Since the masters spend most of their
time waiting for a child processor to
complete, their idle time can be filled
by executing the slave algorithm for the
next unassigned successor position, as
is essentially the case for the architec-
ture of Figure 11.

(2) Alternatively, a master processor may
take charge of the computations at sev-
eral levels in the game tree, especially
near the root of the tree.

(3) The master can assign a successor's
successors to the child processors, im-
proving alpha-beta value sharing, and
reducing the idle time of the slave proc-
essors.

The disadvantage of these refinements is
that either a more involved mechanism is
needed to indicte completion of a child
process (1 and 2), or increased interproces-
sot communication is necessary (3).

4.4 Principal Variation Search

Algor i thms can be des igned for even m o r e
efficient sea rch o f s t rong ly o rde red trees.
One such m e t h o d opera tes on the P r inc ipa l
Var ia t ion as a r e f inemen t o f the t ree-spl i t -

Computing Surveys, VoL 14, No. 4, December 1982

Parallel Search of Strongly Ordered Game Trees • 549

func t ion p v s p l i t (p : p o s i t i o n ; alpha, beta, length : in teger) : i n teger ;
VAR width, i : in teger ;

value : ARRAY [1..MAXWIDTH] OF in teger ;
j : processor;

BEGIN
IF (length s O) THEN

r e t u r n (t r e e s p l i t (p , alpha, be ta)) ;

width : : generate(p) ; { determine successors
{ p.1 .. p.w

alpha : : - p v s p l i t (p . 1 , -beta, -a lpha, l eng tho l) ;
IF (alpha > beta) THEN

re tu rn(a lpha) ;
par fo r i := 2 TO width DO BEGIN

END;

when (a slave j is i d l e) BEGIN
v a l u e [i } := - j . t r e e s p l i t (p . i , -beta, -a lpha) ;
c r i t i c a l BEGIN

IF (v a l u e [i] > alpha) THEN
alpha := v a l u e [i } ;

END;
1F (alpha z beta) THEN BEGIN

te rmina te() ;
re tu rn (a lpha) ;

END;
END;

END;
re tu rn (a lpha) ;

Figure 14. Parallel alpha-beta with processor tree architecture: the PV-splitting algorithm.

ring algorithm, hence the name P V split-
ting [CAMP81]. This algorithm assumes an
underlying hierarchical processor organi-
zation. Its regular configuration limits the
complexity of interprocessor communica-
tion required, and simplifies the control
structure for processor initiation and ter-
mination.

To understand the basis of the PV-split-
ting algorithm it is necessary to closely
examine the nature of the tree searched by
alpha-beta under optimal ordering condi-
tions. Nodes in the tree have been classified
into one of three types [KNUT75]. Intui-
tively, type 1 nodes are those on the prin-
cipal variation, and type 2 nodes are alter-
natives to the principal variation. Type 3
nodes are successors of type 2, and succes-
sors of type 3 are again of type 2. For
optimal search the following conditions
hold:

(1) At type 1 and 2 nodes, the best move
must be considered first.

(2) At type 1 and 3 nodes, all the successors
are examined.

(3) At type 2 nodes, only the first successor
is examined.

Clearly, the power of alpha-beta pruning
derives from the fact that type 2 nodes can

be cut off with less than a full-width search.
Maximum benefit from this cutoff is only
possible, though, if the best alpha value is
available. There is strong reason, therefore,
to establish this alpha value before search-
ing type 2 nodes. For this reason we have
proposed pvsplit (Figure 14), which follows
the principal variation for the number of
ply specified by the length parameter, be-
fore invoking treesplit to bring all the pro-
cessors into play on the largest part of the
minimal tree that must be searched. A fur-
ther enhancement is possible by having the
master processors a~sign their slaves suc-
cessors of successors. This ensures that
type 2 nodes are always explored one
branch at a time, in case a cutoff occurs.
The concurrency is effectively applied at
type 3 nodes, which will have to be searched
hill width in any case.

From a close examination of PV splitting,
one can see how it draws on the minimal
tree concept [AKL82], but two important
differences can be noted. PV splitting as-
sumes an underlying processor hierarchy
structure. This contrasts with Akl's algo-
rithm, which employs a pool of processors
running a group of priority-ordered proc-
esses. Also, the processor tree architecture
is conceptually clearer from an implemen-

Computing Surveys, Vol. 14, No. ~, December 1982

550 • T. A . M a r s l a n d a n d M. C a m p b e l l

Table 3. Comparison between Tree Splitting and
PV Splitting for Various Processor Tree

Configurations a

(L, F) Tree splitting PV splitting

(a) Optimally ordered trees
(1, 2) 1222 961
(1, 4) 922 505
(1, 8) 772 277
(2, 2) 910 648
(3, 2) 778 --

(b) Strongly ordered trees
(1, 2) 27o0 2264
(1, 4) 2030 1425
(1, 8) 1859 1084
(2, 2) 1724 1587
(3, 2) 1172 --

• L ffi processor tree length; F = processor tree fan-out.
Depth = 4, width ffi 24.

ta t ion point of view. A second point of
difference comes about because PV split-
ting waits for the search value of left
subtrees before initiating right subtree
searches. This ensures tha t the best avail-
able alpha value is given to the right subtree
searches, which is not necessarily the case
in o ther algorithms. The cost for this is
increased processor idle time.

T h e advantages of PV splitting over t ree
splitting are fairly obvious (assuming, of
course, strongly ordered trees). In particu-
lar, the width of the processor t ree can be
much greater, since concurrency is only
applied to type 3 positions. Also, much im-
proved sharing of bounds is achieved at the
cost of a modera te increase in communica-
tion overhead. On the other hand, PV split-
t ing suffers f rom the restrict ion tha t the
processor t ree must be shallower than the
t ree being searched, part icularly since proc-
essors are employed at al ternating levels.
The possibility for wider processor t rees
reduces this problem somewhat. T ree split-
ting and PV" splitting have been compared
by simulation. Results are given in Table
3a and b. All searches were carried out on
trees of dep th 4 and width 24. T h e length
parameter to pvsplit was initially 1; thus
the principal variat ion was followed for one
ply before the o ther processors were acti-
vated. I t was assumed tha t one t ime unit of
overhead was needed to process a node,
terminal or nonterminal , and tha t commu-
nication costs were negligible, relative to
this interval.

These pre l iminary figures indicate tha t
PV splitting, as expected, outperforms or-
dinary t ree splitting. T h e wider the proc-
essor tree, the greater is the relative differ-
ence. The values for processor t rees of con-
figuration (2, 2) and (3, 2) are included for
comparison with the (1, 4) and (1, 8) struc-
tures, respectively, since the corresponding
systems have equal numbers of slave nodes.
Apparent ly PV splitting still does better,
bu t this is highly dependent on the ordering
of the tree.

5. C O N C L U S I O N S

This paper has shown tha t many of the
techniques employed by sequential game-
playing programs to improve searching ef-
ficiency are applicable to parallel systems.
Of part icular importance is the proposed
parallel implementa t ion of transposit ion ta-
bles, since such tables provide significant
performance improvement . I t is therefore
reasonable to assume tha t the trees to be
searched by parallel algorithms will be
strongly ordered, and the resul tant proper-
ties can be used to advantage. Pre l iminary
results on the proposed PV splitting in-
dicate tha t this me thod is able to utilize
the ordered-tree characteristics to increase
searching speed.

More detailed analysis of PV splitting is
necessary, mainly in conjunction with the
a lpha-be ta search enhancements . Such
s tudy is probably only possible in an actual
game-playing program. T h e underlying
processor tree archi tecture of the t ree-
splitting algorithms provides a convenient
implementat ion framework for parallel
searches of game trees.

A C K N O W L E D G M E N T S

Financial support for this study was provided by the
Natural Sciences and Engineering Research Council
of Canada Our special thanks go to Visiting Professor
Anne Brindle, editorial assistant Rachel Rutherford,
and the reviewers for their many constructive com-
ments, which helped reduce the potential ambiguities
in this paper. Their efforts were much appreciated and
are gratefully acknowledged.

AxL81

R E F E R E N C E S

AKL, S., AND DORAN, R. "A comparison
of parallel implementations of the alpha-
beta and scout tree search algorithms us-

Computing Surveys, Vol. 14, No. 4, December 1982

AKL82

BAUD78

BIRD80

CAMP81

CAMP83

CICH73

COND82

DEGR65

ENSL74

FISH80

FISH81

FULL73

GILL72

GILL78

GREE67

GRIF76

Parallel Search of Strongly Ordered Game Trees

ing the game of checkers." Tech. Rep. 81-
121, Computing and Information Science
Dep., Queen's Univ., Kingston, Canada, KNUT75
1981.
AKL, S., BARNARD, D., AND DORAN,
R. "Design, analysis, and implementa- MARS74
tion of a parallel tree search algorithm."
IEEE Trans Pattern Anal. Mach. Intell.
PAMI-4, 2 (19824 192-203.
BAUDET, G. "The design and analysis of
algorithms for asynchronous multiproces-
sors." Ph.D. dissertation, Computer Sci- MARSSI
ence Dep., Carnegie-Mellon Univ., Pitts-
burgh, Pa., Apr. 1978.
BIRD, R S. "Tabulation techniques for
recursive programs." ACM Comput. Sure.
12, 4 (Dec. 19804 403-417.
CAMPBELL, M. "Algorithms for the par-
allel search of game trees," M.Sc. thesm,
Tech. Rep. 81-8, Computing Science Dep.,
Univ. of Alberta, Edmonton, Canada,
Aug. 1981.
CAMPBELL, M., AND MARSLAND, T. A.
"A comparison of minimax tree search
algorithms." Art~f. Intell. (to appear). NILsS0
CICHELLI, R.J . "Research progress re-
port in computer chess." SIGART Newsl
41 (Aug. 1973), 32-36. PEAR80
CONDOM, J. H., AND THOMPSON,
K. "Belle chess hardware." In M. R. B.
Clarke (Ed.), Advances m Computer SLAG69
Chess, vol. 3. Pergamon Press, Elmsford,
N. Y., 1982, pp. 45-54.
DE GROOT, A.D. Thought and Choice
m Chess. Mouton, The Hague, 1965. SLAT77
ENSLOW, P. Multiprocessors and Par-
allel Processing. Wiley, New York, 1974.
FISHBURN, J., AND FINKEL, R. "Parallel
alpha-beta search on Arachne." Tech.
Rep. 394, Computer Science Dep., Univ. SORE78
of Wisconsin, Madison, Wis, July, 1980.
FISHBURN, J. "Analysis of speedup m
distributed algorithms." Ph D. disserta-
tmn, Tech. Rep. 431, Computer Science STOC79
Dep., Univ. of Wisconsin, Madison, Wis.,
May, 1981.
FULLER, S., GASCHNIG, J., AND GILLOGLY, THOM81
J. "Analysis of the alpha-beta pruning
algorithm." Computer Science Dep., Car- THOM82
negie-Mellon Univ, Pittsburgh, Pa., 1973.
GILLOGLY, J. "The technology chess
program." Art~f. Intell. 3 (19724 145-163.
GILLOGLY, J. "Performance analysis of
the technology chess program." Ph.D. dis- TRUSS1
sertation, Computer Scmnce Dep., Car-
negie-Mellon Univ., Pittsburgh, Pa.,
March, 1978.
GREENBLATT, R. D., EASTLAKE, D.E. , WEITS0
AND CROCKER, S. D. "The Greenblatt
chess program." In Fall J. Computer
Conf. Proc., vol. 31, Thompson Books, ZOBR70
Washington, D C., 1967, pp. 801-810.
GRIFFITH, A.K. "Empn'ical exploration
of the performance of the alpha-beta tree-

• 551

NEWB77

NEWB79

searching hem'istic." IEI£E Trans. Corn.
put. C-25, 1 (1976), 6-11.
KNUTH, V., ASV MOORE, R. "An analy-
sis of alpha-beta pruning." Artif. Intell. 6
(1975), 293-326.
MARSLAND, T. A., AND RUSHTON, P.
G. "A study of techniques for game-
playing programs." In J. Rose (Ed.) Ad-
vances in Cybernetics and Systems, vol.
1. Gordon and Breach, London, 1974, pp.
363-371.
MARSLAND, T. A., AND CAMPBELL,
M. "A survey of enhancements to the
alpha-beta algorithm." In ACM81 Na-
tional Conf. Proc. (Los Angeles, Calif.,
Nov. 1981). ACM, New York, pp. 109-114.
NEWBORN, M.M. "The efficiency of the
alpha-beta search in trees with branch
dependent terminal node scores." Art~f.
Intell. 8 (1977), 137-153.
NEWBORN, M.M. "Recent progress in
computer chess." In M. C. Yovits (Ed.),
Advances in Computers, voL 18. Aca-
demic Press, New York, 1979, pp. 59-114.
NmssoN, N.J. Principles of Artificial
Intelligence. Tioga Publ., PRIG Alto,
Calif., 1980.
PEARL, J. "Asymptotic properties of
minimax trees and game searching pro-
cedures." Artif. Intell. 14 (1980), 113-138.
SLAGLE, J. R., AND DIXON, J. K.
"Experiments with some programs that
search game trees." J. ACM 16, 2 (Apr.
1969), 189-207.
SLATE, D., AND ATKIN, L. "CHESS,
4.5--The Northwestern University chess
program." In P. Prey (Ed.), Chess Skill m
Man and Machine, chap. 4. Springer Vet-
lag, New York, 1977, pp. 82-118.
SORENSEN, P. G., TREMBLAY, J. P., AND
DEUTSCHER, R. F. "Key-to-address
transformation techniques." INFOR 16,
1 (1978), 1-34.
STOCKMAN, G. "A minimax algorithm
better than alpha-beta?" Artif. Intell. 12
(19794 179-196.
THOMPSON, K. Private communica-
tions, Oct.-Nov. 1981.
THOMPSON, K. "Computer chess
strength." In M. R. B. Clarke (Ed.), Ad-
vances in Computer Chess, vol. 3. Perga-
mon Press, Elmsford, N.Y., 1982, pp.
55-56.
TRUSCOTT, T. R. "Techniques used in
minimax game-playing programs. ' ' Mas-
ter's thesis, Computer Science Dep., Duke
Univ., Durham, N.C., Apr. 1981.
WEITZMAN C. Distributed Micro/Ming-
computer Systems. Prentice Hall, New
York, 1980.
ZOBmST, A. L "A hashing method with
applications for game playing." Tech.
Rep. 88, Computer Science Dep., Univ. of
Wisconsin, Madison, Wis., Apr. 1970.

Received August 1981, final revision accepted September 1982.

Computing Surveys, Vot;14, No. 4, December 1982

%

