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The "alpha-beta" algorithm forms the basts of many programs that search game trees. A 
number of methods have been designed to improve the utility of the sequential version of 
this algorithm, especially for use in game-playing programs. These enhancements are 
based on the observation that alpha-beta is most effective when the best move in each 
position is considered early in the search. Trees that have this so-called "strong ordering" 
property are not only of practical importance but possess characteristics that can be 
exploited in both sequential and parallel environments. 

This paper draws upon experiences gained during the development of programs which 
search chess game trees. Over the past decade major enhancements to the alpha-beta 
algorithm have been developed by people building game-playing programs, and many of 
these methods will be surveyed and compared here. The balance of the paper contains a 
study of contemporary methods for searching chess game trees in parallel, using an 
arbitrary number of independent processors. To make efficient use of these processors, 
one must have a clear understanding of the basic propertms of the trees actually traversed 
when alpha-beta cutoffs occur. This paper provides such insights and concludes with a 
brief description of our own refinement to a standard parallel search algorithm for this 
problem. 

Categories and Subject Descriptors: C.0 [Computer  Sys tems  Organizat ion]:  General-- 
system architectures; C.1 2 [Processor  Architectures] .  Multiple Data Stream 
Architectures (Multlprocessors)--assoc~atwe processors; parallelprocessors; C.4 
[Computer Systems Organizat ion]  Performance of Systems--design studies; F.2.2 
[Analysis of  Algor i thms and Prob lem Complexity] '  Nonnumerical Algorithms and 
Problems--pattern matching, 1.2.8 [Artificial  Intell igence]:  Problem Solving, Control 
Methods and Search--heuristic methods, graph and tree search strategies 

General Terms: Algorithms, ExperLmentatmn 

Additional Key Words and Phrases: Alpha-beta search, computer chess, game playing, 
parallel search, tree decomposition 

INTRODUCTION 

Chess, checkers, kalah, and go are popu- 
lar examples of two-person "zero-sum" 
games--that is, games in which one player's 
losses are his opponent's gains. There are a 
number of methods for programming a 
computer to play such games. The simplest 
(and most successful) programs have as 
their basis "brute-force" search, in which 

an exhaustive examination of all possible 
sequences of moves is carried out until ter- 
minal positions are reached (no more legal 
moves). By subsequently backing up 
through this tree of moves, a player can 
find the best move for his side by using the 
minimax algorithm. Minimax search as- 
sumes that  the players will always select 
the alternative that  is best for them in any 
given position. The advantage of such an 
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approach is that it guarantees perfect play; 
a "winning" position will always be won, 
and a drawn position will at least be drawn. 
This strategy works admirably for games 
such as tictactoe, but most interesting 
games are too large to be handled in this 
fashion. In chess, for example, de Groot 
[DEGR65] has estimated that  the number 
of positions that  could be explored is 38 ~. 

The method used in most current game- 
playing programs is to approximate the 
whole game tree by searching a succession 
of fixed-depth trees. Since the search is 
truncated before the end of the game is 
reached, estimates of the value of the dis- 
carded portion of the tree are made by an 
evaluation function. Such estimates are in- 
herently unreliable, however, since if one 
had a perfect evaluation function, there 
would be no need to conduct a search at all. 
Empirical evidence suggests that  for most 
common games, the deeper the search, the 
higher the quality of the play. The alpha- 
beta pruning algorithm is one technique 
for increasing the speed of minimax search. 
Alpha-beta is able to avoid searching sub- 
trees that  are judged not relevant to the 
outcome of the search, while always pro- 

ducing the same result as minimax. A com- 
plete description of the minimax and alpha- 
beta algorithms can be found elsewhere 
[KNUT75, Nms80]; our own summary of 
them, along with a programming example, 
appears in the next section. 

In this paper we assess the effectiveness 
of various refinements to the alpha-beta 
algorithm, especially with regard to their 
importance in searching trees whose 
branches are ordered to favor early detec- 
tion of the ultimate solution. Most theoret- 
ical work on both sequential and parallel 
game-tree searching has been primarily 
concerned with random trees [FULL73, 
KSUT75, BAUD78], although there is one 
major exception [NEWB77]. In practice, 
truly random trees are quite uncommon, 
and so, under reasonable assumptions, im- 
provements to the searching algorithm are 
possible. Also, these game tree problems 
may be partitioned in a number of different 
ways to facilitate parallel solution. We com- 
pare various ways of doing parallel alpha- 
beta searches and present algorithms that  
attempt to take advantage of the charac- 
teristics of strongly ordered trees. The ra- 
tionale for this work is that  well-ordered 
trees are not only more realistic, but possess 
properties that  can be exploited in a parallel 
environment. General information about 
processor selection and communication is 
not presented here, since it is commonly 
available elsewhere [WEIT80, ENSL74]. 

1. SEQUENTIAL SEARCH ALGORITHMS 

Given a positionp in a two-person zero-sum 
game, all the potential continuations from 
p can be represented as a game tree, with 
nodes corresponding to positions and 
branches to moves. Leaves of the tree are 
called terminal nodes, and are assigned val- 
ues by the evaluation function. All remain- 
ing nodes are classified as nonterminal. 
The task in searching a game tree is to 
determine the minimax value of the root 
node p. Intuitively, the minimax value of a 
node is the best value attainable from that 
node against an opponent who uses a simi- 
lar technique to select his best moves. 

The minimax algorithm assumes that  
there are two players, called Max and Min, 
and it assigns a value to every node in a 
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f u n c t i o n  a i p h a b e t a ( p  : p o s i t i o n ;  a lpha ,  be ta ,  dep th  : i n t e g e r )  : i n t e g e r ;  
VAR w i d t h ,  scope, i ,  va l ue  : i n t e g e r ;  

BEGIN 
IF (depth  $ O) THEN 

r e t u r n ( e v a l u a t e ( p ) ) ;  

w i d t h  := g e n e r a t e ( p ) ;  

IF ( w i d t h  = O) THEN 
r e t u r n ( e v a l u a t e ( p ) ) ;  

score  := a lpha ;  

{ a t e r m i n a l  node? } 

{ d e t e r m i n e  successor p o s i t i o n s  } 
{ p.1 . .  p .w and r e t u r n  number o f  } 
{ successors  as f u n c t i o n  va lue  } 

{ no l ega l  moves? } 

FOR i := 1 TO w i d t h  DO BEGIN 
m a k e ( p . i ) ;  
va lue  := - a l p h a b e t a ( p . i ,  - b e t a ,  - s c o r e ,  d e p t h - I ) ;  
u n d o ( p . i ) ;  

IF ( va lue  > score)  THEN 
score := v a l u e ;  

IF (score  Z be ta )  THEN 
r e t u r n ( s c o P e ) ;  

END; 
r e t u r n ( s c o P e ) ;  

END; 

{ an improvement? } 

{ a c u t o f f ?  } 

Figure 1. Negamax version of the depth-limited alphabeta function. 

game tree (and in particular to the root) as 
follows. Terminal nodes are assigned values 
that represent the desirability of the posi- 
tion from Max's point of view. Nonterminal 
nodes are assigned a value recursively. If 
Max is to move at a given nonterminal 
node, its value is the maximum over the 
values of its successors. Similarly, if it is 
Min's move, he will choose the minimum 
over the values of the successors. 

The alpha-beta algorithm produces the 
same result as minimax, but at reduced 
cost. Typical usage of the alpha-beta algo- 
rithm involves a function call of the form 

V := alphabeta (p, alpha, beta, depth); 

where p represents a position, {alpha, beta) 
represents the search window or range of 
values (the bounds) over which the search 
is to be made, and depth represents the 
intended length of the search path meas- 
ured in ply (i.e., moves). Typically, p is a 
pointer to a data structure that  describes 
the state of the game at this node. The 
exact nature of the structure is very imple- 
mentation dependent. The value returned 
by the function, V, is the minimax value for 
the position p. Figure 1 illustrates a 
"negamax" [KNUT75] version of the depth- 
limited alpha-beta algorithm. Use of the 
negamax framework is particularly attrac- 
tive since, by maximizing over the negative 
of the values returned by the search, 
one avoids the need to select the correct 

maximum/minimum operation. Our vari- 
ous program excerpts are presented in a 
PASCAL-like language, extended with the 
return statement for function termination. 

Although the alpha-beta function only 
returns one value, it is also necessary to 
keep track of the optimal move in position 
p. This is a simple matter, but is not illus- 
trated in Figure 1 in order to keep the 
structure of the program as simple as pos- 
sible. Note also that  our version of alpha- 
beta includes the functions evaluate, to as- 
sess a terminal node, and generate, to pro- 
duce p.1 through p.w, pointers to the im- 
mediate successors of position p. Details 
about the maintenance of these successors 
have been omitted, although functions 
make and undo are included to play and 
retract the current move. Also, evaluate is 
usually complex, because the whole quality 
of the play hinges on the assesment made 
here [SLAT77]. Since the majority of the 
nodes in the tree are terminal, the function 
must not be too time consuming. Neverthe- 
less, in chess programs evaluate often ex- 
tends the search using moves that  are se- 
lected from captures and certain checks. 
This is done to ensure that  only quiescent 
positions are evaluated. 

For purposes of analysis, it is convenient 
to study the performance of the minimax 
and alpha-beta algorithms on uniform trees 
of depth D and constant width W. It is also 
usual to measure the relative efficiency of 
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Figure 2. Minimax tree showing alpha-beta cutoffs. 

tree-searching algorithms in terms of the 
number of terminal nodes evaluated. The 
minimax algorithm will always examine 
M(W, D) ffi W D terminal nodes, while at 
best the alpha-beta algorithm evaluates 
only [SLAG69] 

B(W, D) ffi W w/21 + W tD/2j - I nodes 

where rx] and LxJ represent upper and 
lower integer bounds on x• Thus the effi- 
ciency of the alpha-beta algorithm can be 
very good, potentially visiting as few as two 
times the square root of the maximum num- 
ber of nodes, while still generating the same 
solution path (the principal variation) 
from the root node. However, this optimal 
performance is achieved only when the first 
move considered at each node is the best 
one. That  alpha-beta is effective in reduc- 
ing the number of terminal nodes evaluated 
is clear from a study of the sample uniform 
tree (width ffi 3 and depth ffi 3) shown in 
Figure 2• The numbers at the terminal 
nodes would be produced by an evaluation 
function. The other numbers are the values 
of the individual subtrees, as passed back 
(backed up) to the root node by the alpha- 
beta algorithm. Thus the minimax value of 
this tree is 3, and only 16 terminal nodes 
would be visited, as shown by the solid 
lines, rather than 27, as would be the case 
for an exhaustive search. The dotted 
branches of the tree are said to have been 
cut off or pruned by the alpha-beta algo- 
rithm. 

For the purposes of this paper more re- 
alistic assumptions are needed. A random 
uniform game tree will be defined to be one 
in which the terminal node scores (values 
of nodes at the maximum depth in the tree) 
are uniformly distributed across some fLxed 
range of value. Also, trees are defined to be 

strongly ordered if 

(1) 70 percent of the time the first branch 
from each node is best; 

(2) 90 percent of the time the best move is 
in the first quarter of the branches 
being searched. 

Although these numbers may appear to be 
rather arbitrary, it turns out that  static 
ordering mechanisms, when combined with 
heuristic methods and memo functions 
[BIRD80], tend to produce trees with these 
properties [GILL78, MARS74]. Thus for each 
variation of the alpha-beta algorithm we 
can define the following quantities: 

R ( W , D )  ffi average number of terminal 
nodes visited in a search of a 
random uniform game tree; 

S ( W , D )  ffi average number of terminal 
nodes visited in a search of a 
strongly ordered uniform game 
tree• 

At each terminal node visited during the 
search the evaluation function is invoked 
to assess the position. 

While the performance of alpha-beta on 
random trees has a solid theoretical basis 
[FULL73, BAUD78], at present only empiri- 
cal data are available for strongly ordered 
trees [GRIF76]. Nevertheless, statistical ev- 
idence supports the relationship 

B(W, D) < S(W, D) < R(W,  D) 

<< M(W, D) ffi W D. 

Relative values for these terms can be seen 
from our Monte Carlo simulation results, 
presented in Table 1. These results were 
obtained from trees of depth 4 or less, and 
terminal node scores were chosen from the 
range 0-127. To estimate R, the values were 
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Table 1. Expected Search Costs for Trees (m Number 
of Terminal Nodes Visited) 

Width Best S-Strong R-Random Minimax 

Depth= 3 
8 71 105 (21) 181 (36) 512 

16 271 405 (64) 786 (114) 4096 
24 599 857 (115) 1752 (250) 13824 

Depth= 4 
8 127 281 (88) 690 (153) 4096 

14 511 1286 (430) 4125 (875) 65536 
24 1151 2946 (1013) 10425 (1891) 331776 

• 537 

assigned randomly to the terminal nodes. 
Because of the way the scores were chosen, 
they were not all unique and distinct, and 
so R is slightly underestimated. The calcu- 
lation of S, on the other hand, relied on the 
use of a distribution function at the termi- 
nal nodes, to ensure that  the best move met 
our strong ordering criteria. The parenthe- 
sized numbers represent the standard de- 
viation for 100 independent search trials. 
Therefore Table 1 illustrates the relative 
efficiency of alpha-beta under best, strong, 
random, and worst move ordering assump- 
tions, and supports the view that R(W,  D) 
is very much less than M(W, D). 

2. ENHANCEMENTS TO ALPHA-BETA 
SEARCHING 

Many of the following techniques have 
been developed in efficiency-conscious 
chess programs, but ones that  discard 
moves only at the terminal nodes. These 
programs are often called full-width pro- 
grams because they examine all necessary 
moves at every node, employing "forward 
pruning" only at the terminal nodes to elim- 
inate the quiescent moves. Even so, the 
basic methods are applicable to most pro- 
grams that  search game trees. 

2.1 Aspiration Search 

The interval enclosed by alpha and beta is 
referred to as the window. For the alpha- 
beta algorithm to be effective, the minimax 
value of the root position must lie within 
the initial window. Generally speaking, the 
narrower the initial window, the better is 
the algorithm's performance. In many prob- 
lem domains, including chess, there are re- 

liable methods to estimate the value that  
will be returned by the search. Thus, in- 
stead of using an initial window of ( - INF,  
+INF)--where INF is a number larger than 
any that evaluate will return--one can use 
(V - e, V + e), where V is the estimated 
value and e the expected error. There are 
three possible outcomes of this so-called 
aspiration search, depending on V*, the 
actual minimax value of a positionp. Since 
V* is in the range - I N F  < V* < +INF, one 
of the following conditions is true: 

(1) If V* <__ V -  e, 
then alphabeta(p, V -  e, V + e, D) 

- - V - e .  
(2) I f V * > _ V + e ,  

then alphabeta(p, V -  e, V + e, D) 
~ V + e .  

(3) I f V - e < V * < V + e ,  
then alphabeta(p, V - e, V + e, D) 

Cases I and 2 are referred to as failing low 
and failing high, respectively [FISHS0]. 
Only in Case 3 is the true value of the 
position p found. In this case the search 
time will not be greater than that  for a full 
window search, and cannot be less than 
that for an optimal search. In the failing 
low case, it is necessary for the search to 
show that every alternative from the root 
is less than V - e. Thus, assuming a per- 
fectly ordered tree of width W and depth 
D, 

W [D/21 nodes must be examined. 

Conversely, in the failing high case the 
search stops as soon as an alternative is 
found which is greater than V + e. Again, 
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{ Assume V = est imated va lue  of  p o s i t i o n  p, and 
• = expected e r r o r  l i m i t  } 

alpha := V - e; 
beta  := V + e; 

V := a lphabeta (p ,  a lpha,  beta ,  depth) ;  
IF (V ~ beta)  THEN { f a i l i n g  h igh  } 

V := a lphabeta (p ,  beta ,  +INF, depth)  
ELSE 
IF (V ~ alpha) THEN { f a i l i ng  low } 

V := a]phabeta(p, -INF, alpha, depth); 

} a r r i v e  here  a f t e r  success fu l  search 

F i g u r e  3. Aspiration alpha-beta search. 

under perfect ordering conditions, only 

W LD/2j nodes need be examined. 

Either way the search must be repeated. As 
illustrated in Figure 3, 

V :ffi alphabeta(p, beta, +INF, D); 

must be invoked for the failing high case. 
Empirical evidence has shown aspiration 
searches to be very effective; in TECH, 1 
search time reductions averaging 23 percent 
were noted [GmL78]. This figure was con- 
firmed by Baudet by adapting his results 
for parallel tree search to the sequential 
c a s e  [BAUD78] .  

Falphabeta, for "fail-soft alphabeta" 
[FISH80], is useful when aspiration search- 
ing is employed. Falphabeta is produced 
through two modifications to the alpha- 
beta function of Figure 1. The recursive call 
becomes 

value :ffi -falphabeta(p.i, -beta, 
-max(alpha, score), depth -1); 

and score is initialized to - INF ,  rather than 
alpha. The function f a l phabe ta  gives a 
tighter bound on the true value of the tree 
when the search fails high or low, and does 
so while searching the same nodes as alpha- 
beta [FISH80]. Although falphabeta re- 
quires a slightly larger overhead, any sys- 
tem that uses aspiration searches should 
find the technique practical, even though 
the actual savings may be small, since 

1 All footnotes in this paper refer to chess programs. 
TECH was formulated by J. GiUogly, Carnegie-Mel- 
lon University. Further  details concerning some of 
these programs can be found m More Chess and 
Computers, by D. Levy and M. Newborn, Computer 
Science Press, Rockville, Md., 1982. 

the next iteration may start with a better 
window. 

2.2 Transposition Table 

In carrying out a game tree search it is not 
uncommon for positions to recur in numer- 
ous places throughout the tree. Rather than 
reevaluate these positions, it may be possi- 
ble simply to retrieve the equivalent search 
result from a large hash table [SORE78] 
whose entries represent positions. For game 
modeling, nearly perfect hashing functions 
can be produced. Although there are some 
table management problems that must be 
solved, the technique has very low over- 
head and large potential gains. 

A typical hash index generation method 
is the one proposed by Zobrist [ZOBR70], 
and an illustration of its application to 
chess can be found in a paper by Marsland 
and Campbell [MARs81]. A transposition 
table entry could have the components 
shown in Table 2. 

For best effect the transposition table 
must be incorporated into alpha-beta care- 
fully, as shown in Figure 4. Note that our 
implementation employs two functions, 
store and retrieve, to perform transposition 
table access, but  details have not been in- 
cluded. In addition, functions make and 
undo, to play and retract moves, are omit- 
ted. When a position reached during a 
search is located in the table (i.e., the lock 
matches), there are two possibilities, de- 
pending on whether length is smaller than 
the remaining depth to be searched. If pos- 
sible, score is used to reduce the size of the 
current alpha-beta window, unless length 
is less than the depth of search. In any case, 
move must be tried immediately, since if it 
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Table 2. Components of a M,n=mal Transpos=t,on 
Table Entry 

Ilockl move Iscorel nag I,en h[ pr,o I 

lock  Is used to check that the table entry corre- 
sponds to the desired tree positron; 

m o v e  is the best move in the positron, as determmed 
by a prewous search; 

score  is the value of the subtree as computed previ- 
ously; 

f l a g  indicates whether score  is an upper bound, lower 
bound, or a true value, 

l e n g t h  is the height of the subtree upon whmh score  
is based; 

p r m  is used m table management, to select entries 
for deletmn. 

again causes a cutoff, it will save an expen- 
sive move generation (Figure 4). 

Other possibilities for a transposition ta- 
ble entry also exist. For example, DUCH- 
ESS 2 maintains both upper and lower 
bounds on the position score, with separate 
lengths for each [TRus81], thus improving 
the possibility that one of the bounds may 
be used to reduce the window size. 

Transposition tables are most effective in 
chess end games, where there are fewer 
pieces and more reversible moves. CHESS 
4.73 was the first to demonstrate searches 
of more than 25 ply in certain types of King 
and Pawn endings; by taking advantage of 
this knowledge, gains of a factor of 5 or 
more are typical [SLAT77]. Even in complex 
middle games, however, significant (25-50 
percent) performance improvement has 
been observed [THOM81]. Furthermore, if 
the actual length of the subtree whose re- 
sult is retrieved from the transposition table 
is greater than the specified search depth 
of the current variation, then the effective 
length of the search for this variation is 
greater than the maximum specified depth, 
and so the equivalent of an extended search 
is done. Also, successful use of the trans- 
position table makes the tree more strongly 
ordered. Thus search times shorter than 
those for optimal alpha-beta are possible, 
since some subtrees need not be reeval- 
uated. 

2DUCHESS was formulated by T. Trnscott, B. 
Wright, and E. Jensen, Duke Umverslty. 
3CHESS was formulated by D. Slate, and L. Atkin, 
Northwestern Umversity 

2.3 Killer Heuristic 

The killer heuristic is based on the premise 
that if move My refutes move blx, it is more 
likely that My (the killer) will be effective 
in other positions [GREE67]. Any move that  
causes a cutoff at level N in the tree is said 
to have refuted the move at level N - 1 
[CIcH73]. A node is at level N in the tree if 
it is N ply from the root node. There are 
many ways of using this information. For 
example, the program CHESS 4.7 main- 
tains a short list of "killers" at each level in 
the tree, and attempts to apply them early 
in the search in the hope of producing a 
quick cutoff. A further advantage of the 
killer heuristic is that  it tends to increase 
the usefulness of the transposition table. 
By continually trying the same killer 
moves, there is a greater possibility of 
reaching a position already in the table 
[TRus81], and thus reducing the time spent 
searching the tree. 

In its full generality, the killer heuristic 
can be used to dynamically reorder moves 
as the search progresses. For example, if a 
move My at level N refutes a move at level 
N - 1, then it is worth trying My at level 
N - 2, if it exists, before generating all the 
moves for that  position and trying them in 
order [NEWB79]. An additional method, 
used by AWIT, 4 seeks out defensive moves 
at ply N - 1, which counteract killers from 
level N. The idea behind the generalized 
killer heuristic mechanism is to allow infor- 
mation gathered deep in the tree to be 
redistributed to shallower levels. This is not 
usually done by the full-width programs, 
since it is not clear that  the potential gains 
exceed the overhead. The actual search 
reductions produced by the killer heuristic 
cannot be stated with certainty. Even 
though use of the killer heuristic did not 
yield improvements for TECH [GILL78], 
variations of this method were used in 
CHESS 4.7, DUCHESS, OSTRICH, 5 and 
BLITZ, 6 and were found to be effective. 

4 AWIT was formulated by T. A. Marsland, University 
of Alberta. 
5 OSTRICH was formulated by M. Newborn, McGill 
University. 
6 BLITZ was formulated by R. Hyatt and A. Gower, 
University of Southern Mississippi. 
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func t ion  AB(p : p o s i t i o n ;  alpha, beta, depth : in teger)  : in teger ;  
VAR i ,  va lue,  width,  length, score, f l ag  : in teger ;  

p .opt  : pos i t i on ;  
BEGIN 

r e t r i e v e ( p ,  length, score, f l ag ,  p .op t ) ;  

{ length is  the e f f e c t i v e  subtree he igh t .  
length < 0 - p o s i t i o n  not in tab le .  
length 2 0 - p o s i t i o n  in tab le .  

} 
IF ( length ~ depth) THEN BEGIN 

IF ( f l ag  = VALID) THEN re tu rn (score ) ;  
IF ( f l a g  = LBOUND) THEN 

alpha := max(alpha, score);  
IF ( f l ag  = UBOUND) THEN 

beta := min(beta, score);  
IF (alpha ~ beta) THEN re tu rn (score ) ;  

END; 
{ Note b e n e f i c i a l  update of  alpha or beta bound 

assumes f u l l  width search. 
Score in tab le  i n s u f f i c i e n t  to terminate search 
so cont inue as usual,  but t r y  p .opt  (from tab le)  
before generat ing other moves. 

} 

IF (depth ~ O) THEN { terminal  node? } 
r e t u r n ( e v a l u a t e ( p ) ) ;  

IF ( length ~ O) THEN BEGIN 
score := -AB(p.opt,  -beta, -alpha, d e p t h - I ) ;  
IF (score ~ beta) THEN goto done; 

END 
ELSE score := -INF; 

{ No c u t o f f ,  generate moves } 
width := generate(p) ;  
IF (width = O) THEN { mate or stalemate? } 

r e t u r n ( e v a l u a t e ( p ) ) ;  

FOR i := I TO width DO BEGIN 
value := -AB(p.i, -beta, -max(alpha,score), depth- l ) ;  
IF (value > score) THEN BEGIN 

score := va lue;  
p .opt  := p . i ;  { note best successor } 
IF (score ~ beta) THEN goto done; 

END; 
END; 

done: 
f l a g  := VALID; 
IF ~score ~ alpha) THEN f l ag  := UBOUND; 
IF (score ~ beta) THEN f l ag  := LBOUND; 
IF ( length S depth) THEN 

store(p ,  depth, score, f l ag ,  p .op t ) ;  
re tu rn (score ) ;  

END; 

Figure 4. Alpha-beta implementation using a transposition table. 

2.4 IteraUve Deepening 

I te ra t ive  deepening refers to the  process  of  
using a (D - 1) ply search to p repare  for a 
D ply search. T h a t  is, af ter  a (D - 1) ply 
search one can re ta in  the  moves  of the 
principal  var ia t ion and use t h e m  as an  ini- 
tial sequence of moves  for a D ply search 
[SLAT77]. T h e  cost of  i terat ive search 
(again measured  in t e rms  of the  n u m b e r  of  

te rminal  nodes  visited) is given by  a recur- 
rence relat ion of the  fo rm 

S ( W ,  D) = S ( W ,  D - 1) + F{W,  D), 

where  F (W,  D) is the  expected  cost of  an 
a l p h a - b e t a  search given the  first D - 1 
moves  of the  principal  variat ion,  and W 
is the  search width. T h e  exact  na ture  of  
F ( W ,  D) is no t  known, bu t  it has  been  
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V := O; 
FOR D := 1 TO dep th  DO BEGIN 

a lpha  := V - e;  
b e t a  := V + e;  
V := f a l p h a b e t a ( p ,  a l p h a ,  b e t a ,  D);  

IF (V Z b e t a )  THEN 
V := f a l p h a b e t a ( p ,  V, +INF, D) 

ELSE 
IF (V ~ a ]pha)  THEN 

V := f a ] p h a b e t a ( p ,  - INF,  V, D);  

s o r t ( p ) ;  { bes t  move so f a r  i s  t r i e d  f i r s t  
on n e x t  i t e r a t i o n .  } 

END; 

Figure 5. Iterative deepening with aspiration search. 
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hypothesized for chess programs that em- 
ploy transposition tables [MARS81] 

F(W, D) = B(W, D) 

+ ( W -  1 ) * B ( W -  1, D - 2) 

for the cases W > 20 with D > 4. 
Iterative deepening can be used to advan- 

tage in the following ways: 

(1) It can be used as a method for control- 
ling the time spent in a search. In the 
simplest case, new iterations can be 
tried until a preset time threshold is 
passed. 

(2) A (D - 1) ply search can provide a 
principal variation, which, with high 
probability, contains a prefix of the D 
ply principal variation. This allows the 
alpha-beta search to proceed more 
quickly. 

(3) The value returned from a (D - 1) ply 
search can be used as the center of an 
(aspiration) alpha-beta window for the 
D ply search (Figure 5). It is probable 
that this window will also contain the 
value for the current search, thus re- 
ducing search time. 

These last two points, though significant, 
are not really complete justifications for the 
use of iterative deepening. In fact, in exper- 
iments with checkers game trees [FISH80], 
it was found that iterative deepening in- 
creased the number of nodes searched by 
20 percent (apparently only using Point (2), 
however). In addition, studies with TECH 
using a generalized version of (2), but not 
(3), noted a 5 percent increase in search 
times when iterative deepening was applied 
[GILL78]. It appears that a strong initial 

move ordering, together with a good alpha- 
beta window estimate, can approximately 
match the advantages of iterative deepen- 
ing. The real searching advantage of itera- 
tive deepening, however, is that 

(4) The transposition table and killer lists 
are filled with useful values and moves. 

As a consequence, the search may proceed 
more quickly since the table entries and 
killer lists tend to direct the search along 
lines that are sufficiently good to cause 
immediate cutoffs. 

The importance of transposition tables 
is illustrated by the performance of the 
BELLE 7 chess machine [CoNy82]. Typical 
chess middle-game positions have branch- 
ing factors of 35-40. It has been found that 
in such positions, it normally costs BELLE 
a factor of between 5 and 6 to go one further 
ply, in fact, slightly less than the expected 
cost of optimal alpha-beta [THOM81]. Ex- 
actly how much each additional ply im- 
proves the performance of a program has 
recently been quantified by Thompson 
[THoM82]. This was done by playing a se- 
ries of matches between (D + 1) ply and D 
ply versions of BELLE, for all values of D 
from 3 to 8. 

An alternative form of iterative deepen- 
ing, one that is especially appropriate if 
transposition tables are not used, was em- 
ployed by L'EXCENTRIQUE. s A 2 or 4 ply 
minimax search was first performed to ob- 
tain W minimax move pairs (move and best 

7 BELLE was formulated by K. Thompson and J. 
Condon, Bell Telephone Laboratories. 
8 L 'EXCENTRIQUE was formulated by C. Jarry, CIP 
Inc., Sun Life Building, Montreal. 
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func t ion  PVS(p : p o s i t i o n ;  depth : in teger)  : in teger ;  
VAR width,  score, i ,  va lue : i n teger ;  

BEGIN 
IF (depth ~ O) THEN 

r e t u r n ( e v a l u a t e ( p ) ) ;  
width := generate(p) ;  
IF (width = O) THEN 

r e t u r n ( e v a l u a t e ( p ) ) ;  
score := -PVS(p.1, dep th - I ) ;  
FOR i := 2 TO width DO BEGIN 

value := - f a l p h a b e t a ( p . i ,  - sco re - I ,  -score, dep th - I ) ;  
IF (value > score) THEN 

score := - f a l p h a b e t a ( p . i ,  -INF, -va lue,  dep th - I ) ;  
END; 
re tu rn (score ) ;  

END; 

Figure 6. Minimal window search. 

refutation). These were then sorted and a 
6, 8, 10, . . .  ply iterative deepening cycle 
initiated. The rationale behind 2 ply incre- 
ments is to preserve a consistent theme 
between interations, so that  the principal 
variation will not flip-flop between attack- 
ing and defensive lines. To our knowledge, 
no comparison between this and conven- 
tional iterative deepening has been done. 
Likewise, no quantitative study of the ad- 
vantages of minimax move pairs over con- 
ventional alpha-beta move pairs {move and 
sufficient refutation) seems to have been 
done. In either case, this refutation table 
usage is a valuable way of guiding the 
search, since the storage requirement is 
only W* D (width * depth) entries. For 
each variation at the next iteration, the 
corresponding sequence of moves in the 
refutation table is tried first. Often these 
sequences will be sufficient to cut off the 
search, thus reducing the number of nec- 
essary move generations. In our experience 
with chess programs, use of a refutation 
table to seed the variations often improves 
iterative deepening searches by 30 percent. 

2.5 Other Searching Techniques 

A number of modifications to the alpha- 
beta algorithm have been proposed. They 
are examined here mainly for compatibility 
with the other search enhancements dis- 
cussed. 

An interesting implementation of the al- 
pha-beta algorithm treats the first varia- 
tion in a special way. The method was 
originally called Palphabeta [FISH80] and 
then renamed Calphabeta [FmHS1], but 

will be referred to here as principal varia- 
tion search or PVS for short. Once a can- 
didate principal variation is obtained, the 
balance of the tree is searched with a min- 
imal window, an alpha-beta window of 
(-score - 1, -score), where score is the 
best value found so far (Figure 6). On the 
other hand, if the tree is poorly ordered, 
each subtree that  is better than its elder 
siblings must be searched again. Hence 
there is some risk that PVS will examine 
more nodes than alpha-beta. When itera- 
tive deepening is used to provide a principal 
variation, PVS becomes more effective, be- 
cause with each iteration it is increasingly 
likely that the first move tried is best. The 
structure of PVS can be seen in Figure 6, 
which includes an alpha-beta refinement, 
falphabeta, to enable use of a narrower 
window whenever the minimal window 
search fails. For simplicity, make and undo 
are again omitted. 

The basic idea behind PVS is that  it will 
assume that  the first move made at each 
node is best. Thus PVS makes a recursive 
call to the first successor, p.1, and deter- 
mines its value. The remaining successors, 
p.i for 2 _< i _< width, are examined in turn. 
If one of these successors has a value that  
is greater than that  for the current principal 
variation, it becomes the new principal var- 
iation, and is searched again with the cor- 
rect window. It is possible that  PVS can 
also benefit from some form of aspiration 
search, but to our knowledge that  has not 
yet been accomplished. Even so, our expe- 
rience with PVS suggests that  a 13 percent 
improvement in speed over an aspiration 
search may be expected. One practical ob- 
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servation about the operation of the mini- 
mal window search has been made, namely, 
after a failing-high minimal window search 
at the first level in the tree, there is no need 
to follow immediately with a full window 
search [THEM81]. Since we now have a new 
bound on the minimax value, only if an 
even more successful variation arises will 
there be any doubt about which one might 
be the new principal variation. This refine- 
ment has been tested in the BELLE pro- 
gram, and search time reductions of up to 
50 percent have been noted. 

SCOUT [PEAR80] is a further generali- 
zation of PVS, in which the final call to 
falphabeta is replaced by 

score := -PVS(p.i, depth - 1); 

In its original form, SCOUT did not use the 
minimal window idea, but rather an equiv- 
alent test procedure. Initial simulation re- 
sults indicate that  PVS is slightly better 
than SCOUT on strongly ordered trees 
[CAMPS3].  

Even though SSS* [STOc79] and staged 
SSS* [CAMP83] are effective in the search 
of random or poorly ordered trees, these 
algorithms are not significantly better than 
alpha-beta on strongly ordered trees, and 
require more time and space. We do not 
consider further those methods that  are not 
especially suited to the search of strongly 
ordered trees. 

APPROACHES TO PARALLEL TREE 
SEARCH 

The best way to make Kprocessors perform 
an alpha-beta search on a tree is not 
known. Generally, a K-fold increase in com- 
puting power is not possible because some 
intercommunication between processors is 
necessary, causing losses as they wait for 
these messages. More important, if inde- 
pendent subtrees are searched concur- 
rently, it is likely that redundant nodes will 
be examined, because the best bounds are 
not always available. In spite of these prob- 
lems, some processor configurations yield 
substantially higher effective computing 
power than others. 

3.1 Parallel Evaluation 

Current game-playing programs that  carry 
out full-width searches must come to terms 

with the trade-off between depth of search 
and complexity of terminal node evalua- 
tion. Most of the stronger chess programs 
employ a rather simplistic scoring (evalua- 
tion) function, in order to make time for 
deeper searches. Nevertheless, a consider- 
able portion of the search time is spent in 
evaluation: on the order of 40 percent in 
both BLITZ and DUCHESS. 

An obvious application of concurrency to 
game tree search appears to be within the 
scoring function itselt~ A number of pro- 
cessors could be used to evaluate simulta- 
neously different terms in the scoring func- 
tion, which could be combined to form an 
overall evaluation of the position. This 
method is used to a limited extent in the 
chess machine BEBE. 9 

Advantages of this technique are numer- 
ous: 

(1) Evaluation time can be reduced, allow- 
ing deeper searches. 

(2) Many small, cheap processors can be 
used to evaluate individual features in 
a position. 

(3) Since there is no obvious limit to the 
amount of concurrency possible, the 
evaluation function can be considerably 
more complex: large amounts of game- 
specific knowledge can be utilized, and 
extended arbitrarily. 

Admittedly a large proportion of terminal 
nodes in a full-width search, about 50 per- 
cent in CHESS 4.7, need nothing more than 
a count of the pieces held by each side 
[SLAT77]. Nevertheless, applying concur- 
rency to the evaluation function, as de- 
scribed above, can improve positional un- 
derstanding in the remainder. It is these 
positional factors that  are so expensive, 
and, by this technique, can be computed 
concurrently with material evaluation and 
each other. 

Another method, employed by BELLE 
and to a lesser extent by BEBE, is to par- 
tition the board and to apply a micro- 
processor to the maintenance of the data 
structure associated with each square. Ul- 
timately one could envision an evaluation 
machine that would consist of a processor 

9 BEBE was formulated by T. Scherzer, SYS-10 Inc., 
Chicago. 
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hierarchy. For example, bottom-level proc- 
essors would assess primitive board fea- 
tures, passing the values to higher level 
processors, which would combine the fea- 
tures in various (not necessarily linear) 
ways to form more complex features. The 
machine could also have the ability to re- 
turn from a terminal search with an indi- 
cation that the position is too unstable to 
assess reliably. While it is too early to say 
how far one can successfully pursue this 
approach in practice, it is clear that there 
are many opportunities for experimental 
and theoretical work. 

3.2 Parallel Aspiration 

Even though the alpha-beta search itself is 
relatively efficient, the aspiration refine- 
ment provides improvement whenever it is 
successful. One parallel implementation of 
this idea is to divide the alpha-beta window 
into nonoverlapping subintervals and apply 
a processor to each range [BAUD78]. For 
example, take 

Processor 1 ( - INF,  V -  e) 
Processor 2 ( V -  e, V + e) 
Processor 3 ( V +  e, +INF). 

Ideally Processor 2 will finish first, but, in 
any case, one of them will succeed, and will 
do so in less time than a uniprocessor 
searching over ( - INF,  +INF). Those proc- 
essors that fail early can cut off or improve 
the bounds for others. Baudet [BAUD78] 
has explored optimal ways of decomposing 
windows, including in his exposition meth- 
ods that do not initially cover ( - INF,  
+INF). 

There are two important results from this 
parallel aspiration work: 

(1) Maximum expected speedup is typi- 
cally a factor of 5 or 6, regardless of the 
number processors available. This is 
because the cost of an aspiration search 
is bounded below by B(W,  D). 

(2) When the number of processors (K) 
is small (K = 2 or 3), the speedup 
obtained may be greater than K 
[BAUD78]. 

These results are based on certain assump- 
tions; in particular, it is assumed that the 

distribution of the backed-up value is 
known. The implications for parallel search 
of strongly ordered trees are not clear, but  
since the sequential version of the aspira- 
tion search is so effective for chess game 
trees, one cannot expect the parallel aspi- 
ration methods to offer much improvement. 

3.3 Tree Decomposition 

Most discussions of parallel game tree 
search have concentrated on concurrent ex- 
amination of independent subtrees. Al- 
though there are a number of overheads 
involved in concurrent search of different 
subtrees, they can be divided into two 
broad categories, search overhead and com- 
munication overhead. Even Baudet con- 
cludes that  parallel aspiration searching 
must be combined with tree decomposition 
if large performance improvements are de- 
sired [BAUD78]. 

The efficiency of most search algorithms 
arises from the fact that decisions to cut off 
search on given subtrees are based on all 
the accumulated information obtained to 
that point in the search. For various rea- 
sons, this information is not always avail- 
able to parallel search algorithms. Com- 
munication delays may make the data ar- 
rive too late or, more important, informa- 
tion may not yet be available as it is being 
calculated by another concurrent search. 
The extra effort that a given parallel algo- 
rithm must carry out (relative to the se- 
quential algorithm) can be defined as the 
search overhead. 

Communication overhead can arise in 
different ways, depending on the system 
configuration. Information can be ex- 
changed via some sort of message-passing 
system, or through a globally shared data 
structure. The former incurs message-pass- 
ing costs, whereas the latter requires syn- 
chronization overhead if high degrees of 
concurrency are to be achieved. Of course, 
the volume of information to be shared is 
dependent upon the particular search al- 
gorithm used, but  it seems clear that, in 
general, communication overhead is in- 
versely related to search overhead. In other 
words, if improved sharing of data between 
independent searches is achieved (at in- 
creased communication costs}, better cutoff 
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Black  p o s i t i o n s  White p o s i t i o n s  
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Figure 7. Transposition table access and management. 

decisions can be made by the search algo- 
rithm, thus reducing search overhead. 

3.4 Enhancements to Parallel Search 

Before considering newer search algo- 
rithms, the sequential search enhance- 
ments will be assessed to determine their 
effectiveness in a parallel situation. 

Aspiration searching in parallel offers no 
particular advantage, since a single proces- 
sor employing a good initial window will do 
just as well. However, the sequential ver- 
sion of aspiration searching, when used in 
conjunction with iterative deepening, is 
equally, if not more, applicable to parallel 
systems, since a common problem of such 
systems concerns their inappropriately 
wide windows. 

Transposition tables continue to be effec- 
tive, provided that all the processors access 
the same table. Since transposition table 
usage is a naturally autonomous function, 
it is an especially attractive parallel appli- 
cation. Furthermore, a processor can do 
something useful while waiting for access 
to the transposition table, namely, evaluate 
the next subtree. If the position sought is 
not in the table, then no time is lost; other- 
wise, the first result from either the tree 
recomputation or the table access is used. 

Access delays to the transposition table 
can be reduced by dividing the table into 
ranges and providing a different processor 
for each partition. In any case, the table 
naturally splits itself into two portions, 

those positions for white to move and those 
for black (Figure 7). This scheme is quite 
independent of the relationships between 
the game processors, (71, C~, and C3, which 
share and provide updates for the transpo- 
sition table memory. The game processors 
place their transposition requests with a 
manager, Po. A potential bottleneck exists 
there, but this should not be severe since 
Po has no significant computational func- 
tions beyond those necessary for the rout- 
ing operations. 

The killer heuristic presents problems 
similar to the transposition table. The killer 
list of moves that have been effective in 
comparable positions is so small, however, 
that the management problems are much 
reduced. 

The other alpha-beta modifications are 
relatively unaffected by parallelism. Fal- 
phabeta proceeds identically, with similar 
advantages to those found in sequential 
systems. PVS restricts the method of ap- 
plication of parallelism to the tree, to en- 
sure the correct minimal windows can be 
found, but these restrictions are not neces- 
sarily deleterious. 

4. TREE DECOMPOSITION METHODS 

4.1 Naive Approach 

With a static decomposition, the game tree 
is split into groups of subtrees, and each 
subtree is assigned to a different processor 
(Figure 8). As processors complete, they are 
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Figure 8. Apply all K processors at the ELrst level 
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Figure 9. Necessary tree searched during the first phase 

allocated to the next group of subtrees, until '  
the full tree is evaluated. Ideally each proc- 
essor should be given exactly the same size 
of subtree to search, in order that  all may 
complete at about the same time. Even so, 
the efficiency of this method is very sensi- 
tive to the width/processor ratio W/K.  

More important, for a typical game tree 
with W--  40, a direct alpha-beta search is 
equivalent to an exhaustive search of a tree 
with W = 7 [GILL72]. Thus, if K - -  40 
processors are applied at the root of the 
tree, the average speedup over a uniproces- 
sot employing alpha-beta would be only 7. 
Note that  the most serious disadvantage 
with this scheme is that  the processors 
share alpha-beta values in a very limited 
way. 

4.2  Minimal Tree 

The minimal tree that must be searched by 
the sequential version of the alpha-beta 
algorithm has a very definite structure. It 
has been proposed that these subtrees be 
searched independently and concurrently 
as the first stage of a parallel algorithm 
[AKL82]. Akl's method uses the alpha-beta 
window generated by the first phase to 
speed a second phase, where an independ- 
ent parallel search of the remaining sub- 

trees takes place. To simplify the descrip- 
tion, the following terminology is used: 

The first branch of a node points to the 
left son, and is contained in the left sub- 
tree. All other branches of the node point 
to right sons and are in right subtrees. 

Phase 1. Recursively search the left sub- 
tree of the root node, and the left subtrees 
only of right sons of the root node. At the 
end of this phase the left sons will have 
been fully evaluated. The right sons will 
have temporary values, which are the val- 
ues of their left sons. Figure 9 shows the 
first phase of a search on a 3 ply tree. The 
branches explored are marked with solid 
lines and terminal scores. 

Phase 2. Those subtrees whose tempo- 
rary values are insufficient to cause a cutoff 
are now assigned different processors and 
searched one branch at a time until all right 
sons have been cut off or fully explored. 
The second phase of the search is illus- 
trated in Figure 10. Again solid lines show 
the branches examined during this phase, 
single dots show lines never considered, and 
double dots show variations completed dur- 
ing the first phase. Assuming perfect order- 
ing, the search will have cost B(W, D - 1) 
+ (W - 1)*B(W, D - 2), where Wis  the 
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Figure 10, Balance of the tree searched during the second phase. 

width of each node and D the maximum 
depth of search. 

This model has been simulated for cases 
with W _  20 and trees with random termi- 
nal nodes [AKL82]. Although it is not yet 
clear how effective an actual implementa- 
tion might be, an important point has been 
made: certain subtrees must be searched, 
no matter what the conditions, and so they 
may as well be searched in parallel, al- 
though perhaps not with the narrowest pos- 
sible bounds that sequential alpha-beta 
could supply. 

SCOUT can be adapted to a parallel sys- 
tem in a similar manner [AKL81]. Simula- 
tions indicate that parallel SCOUT is 
slightly better than parallel alpha-beta for 
strongly ordered trees, but alpha-beta is 
better as trees become less ordered. 

4.3 Processor Tree Hierarchy 

In order to limit interprocessor communi- 
cation, one should use simple connection 
mechanisms. For example, in the processor 
tree of Figure 11 each node in the hierarchy 
has a fan-out of 2 and a distinct computa- 
tional function. In the simplest case, all 
nonterminal nodes of the processor tree 
execute a Master algorithm. They receive 
a position and an alpha-beta window from 
their parent, generate successor positions, 
and assign them to child processors. When- 
ever a child completes, it returns a value 
for its subtree. If this value causes the alpha 
bound to change, the master interrupts its 
children and forces them to update their 
alpha-beta values, using the mechanism of 
Figure 12. 

The terminal nodes of the processor tree 
also receive a position and a window, but 
simply execute a Slave algorithm to con- 
struct the game tree to its maximum per- 

P1 

Figure 11. 

p P1 
P3 

p2•_•• 
P2 

P4 

Example of processor tree method. 

mitted depth, evaluate the terminal nodes, 
and return to the master (parent) the best 
value for the subtree. This is essentially the 
tree-splitting algorithm [FISH80], and is in- 
formally presented in Figure 13. The pro- 
cessor tree architecture (Figure 11) is well 
suited to executing the tree-splitting algo- 
rithm. Several constructs have been 
adapted from Fishburn's work [FmH81] for 
the algorithm presentation in Figure 13, as 
follows: 

(1) j . t reespl i t  is the recursive execution of 
t reespl i t  on processorfi 

(2) parior, a parallel for loop, conceptually 
creates a separate process for each it- 
eration of the loop. The program con- 
tinues as a single process when all it- 
erations are complete. 

(3) when waits until its associated condi- 
tion is true before proceeding with the 
body of the statement. 

(4) crit ical allows only one process at a 
time into a critical region. 

(5) procedure terminate kills all processes 
in the parfor loop that  are still active. 
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VAR alpha, beta : ARRAY [1..MAXDEPTH] OF i n t e g e r ;  
{ a l p h a - b e t a  bounds are  s to red  in  g l o b a l  t a b l e s  
procedure update (dep th ,  s ide ,  bound : i n t e g e r ) ;  
BEGIN 

IF (s ide  > O) THEN 
a l p h a [ d e p t h ]  := max (a lpha [dep th ] ,  bound) 

ELSE 
b e t a [ d e p t h ]  := m i n ( b e t a [ d e p t h ] ,  bound);  

IF (depth > O) THEN 
up,date(depth- I ,  - s i de ,  -bound);  

END; 

Figure 12. Dynamic update of alpha-beta values. 

f u n c t i o n  t r e e s p l i t ( p  : p o s i t i o n ;  a lpha ,  be ta  : i n t e g e r )  
VAR w i d t h ,  i : i n t e g e r ;  

va l ue  : ARRAY [1..MAXWIDTH] OF i n t e g e r ;  
j : p rocessor ;  

BEGIN 
IF ( I  am a l ea f  p rocessor )  THEN 

r e t u r n ( a l p h a b e t a ( p ,  a lpha ,  b e t a ) ) ;  

w id th  : :  gene ra te (p ) ;  { de te rm ine  successors 
{ p.1 . .  p.w 

p a r f o r  i := 1 TO w id th  DO BEGIN 
when (a s lave j i s  i d l e )  BEGIN 

v a l u e [ i ]  := - j . t r e e s p l i t ( p . i ,  -be ta ,  - a l p h a ) ;  
c r i t i c a l  BEGIN 

IF ( v a l u e [ i ]  > a lpha)  THEN 
alpha := v a l u e [ i ] ;  

END ; 
IF (a lpha > be ta)  THEN BEGIN 

te rmina te (  ) ; 
r e t u r n ( a l p h a )  ; 

END ; 
END ; 

END ; 
r e t u r n ( a  lpha) ; 

END; 

Figure 13. The tree-splitting algorithm. 

: i n t e g e r ;  

An important feature of parallel imple- 
mentations is dynamic updating of the al- 
pha-beta windows, since this speeds the 
completion of the child processors. Even 
though an inexpensive mechanism for dy- 
namically sharing these bounds is available 
[FISH80], the processors still spend a large 
amount of time computing without their 
benefit. Fortunately, the update method is 
relatively simple, as shown by the pseudo- 
code of Figure 12. 

There are a number of refinements to the 
processor tree scheme. 

(1) Since the masters spend most of their 
time waiting for a child processor to 
complete, their idle time can be filled 
by executing the slave algorithm for the 
next unassigned successor position, as 
is essentially the case for the architec- 
ture of Figure 11. 

(2) Alternatively, a master processor may 
take charge of the computations at sev- 
eral levels in the game tree, especially 
near the root of the tree. 

(3) The master can assign a successor's 
successors to the child processors, im- 
proving alpha-beta value sharing, and 
reducing the idle time of the slave proc- 
essors. 

The disadvantage of these refinements is 
that either a more involved mechanism is 
needed to indicte completion of a child 
process (1 and 2), or increased interproces- 
sot communication is necessary (3). 

4.4 Principal Variation Search 

Algor i thms  can  be  des igned for  even  m o r e  
efficient sea rch  o f  s t rong ly  o rde red  trees.  
One  such  m e t h o d  opera tes  on  the  P r inc ipa l  
Var ia t ion as a r e f inemen t  o f  the  t ree-spl i t -  
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func t ion  p v s p l i t ( p  : p o s i t i o n ;  alpha, beta, length : in teger )  : i n teger ;  
VAR width,  i : in teger ;  

value : ARRAY [1..MAXWIDTH] OF in teger ;  
j : processor; 

BEGIN 
IF ( length s O) THEN 

r e t u r n ( t r e e s p l i t ( p ,  alpha, be ta ) ) ;  

width : :  generate(p) ;  { determine successors 
{ p.1 .. p.w 

alpha : :  - p v s p l i t ( p . 1 ,  -beta,  -a lpha,  l eng tho l ) ;  
IF (alpha > beta) THEN 

re tu rn(a lpha)  ; 
par fo r  i := 2 TO width DO BEGIN 

END; 

when (a slave j is i d l e )  BEGIN 
v a l u e [ i }  := - j . t r e e s p l i t ( p . i ,  -beta, -a lpha) ;  
c r i t i c a l  BEGIN 

IF ( v a l u e [ i ]  > alpha) THEN 
alpha := v a l u e [ i } ;  

END; 
1F (alpha z beta) THEN BEGIN 

te rmina te( ) ;  
re tu rn (a lpha ) ;  

END; 
END; 

END; 
re tu rn (a lpha ) ;  

Figure 14. Parallel alpha-beta with processor tree architecture: the PV-splitting algorithm. 

ring algorithm, hence the name P V  split- 
ting [CAMP81]. This algorithm assumes an 
underlying hierarchical processor organi- 
zation. Its regular configuration limits the 
complexity of interprocessor communica- 
tion required, and simplifies the control 
structure for processor initiation and ter- 
mination. 

To understand the basis of the PV-split- 
ting algorithm it is necessary to closely 
examine the nature of the tree searched by 
alpha-beta under optimal ordering condi- 
tions. Nodes in the tree have been classified 
into one of three types [KNUT75]. Intui- 
tively, type 1 nodes are those on the prin- 
cipal variation, and type 2 nodes are alter- 
natives to the principal variation. Type 3 
nodes are successors of type 2, and succes- 
sors of type 3 are again of type 2. For 
optimal search the following conditions 
hold: 

(1) At type 1 and 2 nodes, the best move 
must be considered first. 

(2) At type 1 and 3 nodes, all the successors 
are examined. 

(3) At type 2 nodes, only the first successor 
is examined. 

Clearly, the power of alpha-beta pruning 
derives from the fact that type 2 nodes can 

be cut off with less than a full-width search. 
Maximum benefit from this cutoff is only 
possible, though, if the best alpha value is 
available. There is strong reason, therefore, 
to establish this alpha value before search- 
ing type 2 nodes. For this reason we have 
proposed pvsplit (Figure 14), which follows 
the principal variation for the number of 
ply specified by the length parameter, be- 
fore invoking treesplit to bring all the pro- 
cessors into play on the largest part of the 
minimal tree that must be searched. A fur- 
ther enhancement is possible by having the 
master processors a~sign their slaves suc- 
cessors of successors. This ensures that  
type 2 nodes are always explored one 
branch at a time, in case a cutoff occurs. 
The concurrency is effectively applied at 
type 3 nodes, which will have to be searched 
hill width in any case. 

From a close examination of PV splitting, 
one can see how it draws on the minimal 
tree concept [AKL82], but  two important 
differences can be noted. PV splitting as- 
sumes an underlying processor hierarchy 
structure. This contrasts with Akl's algo- 
rithm, which employs a pool of processors 
running a group of priority-ordered proc- 
esses. Also, the processor tree architecture 
is conceptually clearer from an implemen- 
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Table 3. Comparison between Tree Splitting and 
PV Splitting for Various Processor Tree 

Configurations a 

(L, F) Tree splitting PV splitting 

( a) Optimally ordered trees 
(1, 2) 1222 961 
(1, 4) 922 505 
(1, 8) 772 277 
(2, 2) 910 648 
(3, 2) 778 -- 

(b) Strongly ordered trees 
(1, 2) 27o0 2264 
(1, 4) 2030 1425 
(1, 8) 1859 1084 
(2, 2) 1724 1587 
(3, 2) 1172 -- 

• L ffi processor tree length; F = processor tree fan-out. 
Depth = 4, width ffi 24. 

ta t ion point  of view. A second point  of  
difference comes about  because PV split- 
ting waits for the search value of left  
subtrees before initiating right subtree 
searches. This  ensures tha t  the best  avail- 
able alpha value is given to the right subtree 
searches, which is not  necessarily the case 
in o ther  algorithms. The  cost for this is 
increased processor idle time. 

T h e  advantages of PV splitting over t ree  
splitting are fairly obvious (assuming, of 
course, strongly ordered trees). In particu- 
lar, the  width of  the processor t ree  can be 
much  greater,  since concurrency is only 
applied to type  3 positions. Also, much  im- 
proved sharing of  bounds is achieved at  the 
cost of a modera te  increase in communica- 
tion overhead. On the  other  hand, PV split- 
t ing suffers f rom the restrict ion tha t  the 
processor t ree  must  be shallower than  the  
t ree  being searched, part icularly since proc- 
essors are employed at  al ternating levels. 
The  possibility for wider processor t rees 
reduces this problem somewhat.  T ree  split- 
ting and PV" splitting have been compared  
by simulation. Results are given in Table  
3a and b. All searches were carried out  on 
trees of  dep th  4 and width 24. T h e  length 
parameter  to pvsplit was initially 1; thus 
the principal variat ion was followed for one 
ply before the o ther  processors were acti- 
vated. I t  was assumed tha t  one t ime unit  of  
overhead was needed to process a node, 
terminal  or nonterminal ,  and tha t  commu- 
nication costs were negligible, relative to 
this interval. 

These  pre l iminary  figures indicate tha t  
PV splitting, as expected, outperforms or- 
dinary t ree  splitting. T h e  wider the  proc- 
essor tree, the  greater  is the relative differ- 
ence. The  values for processor t rees of con- 
figuration (2, 2) and (3, 2) are included for 
comparison with the  (1, 4) and (1, 8) struc- 
tures, respectively, since the corresponding 
systems have equal  numbers  of  slave nodes. 
Apparent ly  PV splitting still does better,  
bu t  this is highly dependent  on the ordering 
of the tree. 

5. C O N C L U S I O N S  

This  paper  has  shown tha t  many  of the  
techniques employed by  sequential  game- 
playing programs to improve searching ef- 
ficiency are applicable to parallel systems. 
Of part icular  importance is the  proposed 
parallel implementa t ion of transposit ion ta- 
bles, since such tables provide significant 
performance improvement .  I t  is therefore  
reasonable to assume tha t  the trees to be 
searched by parallel algorithms will be 
strongly ordered, and the resul tant  proper- 
ties can be used to advantage. Pre l iminary 
results on the proposed PV splitting in- 
dicate tha t  this me thod  is able to utilize 
the ordered-tree characteristics to increase 
searching speed. 

More  detailed analysis of PV splitting is 
necessary, mainly in conjunction with the 
a lpha-be ta  search enhancements .  Such 
s tudy is probably only possible in an actual  
game-playing program. T h e  underlying 
processor tree archi tecture  of the t ree-  
splitting algorithms provides a convenient  
implementat ion framework for parallel 
searches of game trees. 
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