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Abstract

This paper reports a preliminary research of
application of inductive logic programming
for pruning nodes in the alpha-beta game-
tree search method, which finds an appro-
priate move by looking game-trees in a Lim-
ited depth ahead. The alpha-beta method
reduces the number of nodes by keeping and
updating lower and upper bounds of static
evaluation. Pruning effect depends on an ac-
cidental order of nodes visited, because we
can expect large pruning after we have large
update. This paper proposes a method to
learn rules to sort nodes to yield effective
pruning, by using inductive logic program-
ming framework. The method induces a logic
program of a binary relation among nodes,
and sorts nodes based on the relation. We
mmspected the method with the game othello.

1 INTRODUCTION

Inductive logic programming (ILP) is an inductive
learning method in the framework of logic program-
ming, which involves the first-order logic formal-
ism. ILP tries to find a logic program, called a
hypothesis, that explains given examples with re-
spect to also given background knowledge. The
examples and the background knowledge are de-
scribed in logic programs. ILP has been evidenced
to work for many classification problems in com-
plex structural domains, such as molecular biol-
ogy and natural language processing[De Raedt, 1995,
Muggleton, 1992]. The field of game also supplies
problems for ILP research. Many ILP methods are
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imspected by applying to the chess domain (for exam-
ple, [Fiirnkranz, 1996, Quinlan, 1990, Morales, 1992,
Morales, 1997, Bain & Srinivasan, 1995]). Chess is
recognized as a suitable domain for ILP because data
i the domain, such as game configuration, have com-
plex structure and are expressed better m the first-
order logic formalism.

Our previous work [Nakano et al., 199§ challenged to
imduce game heuristics to evaluate game configurations
in the domain of shogi, or Japanese chess. In the work
we reduced the heuristics induction problem mto a
simple classification problem, which classifies instances
of a relation better-choice. better-choice(b,m 1, ms2) is
true when a move m; is better than a move mg to
be taken for a game configuration b. We proposed a
method to constitute a total order relation from a rela-
tion defined as the better-choice relation, which is not
even partial order, induced by an ILP algorithm from
mstances collected from experience of solving shogi
problems. The method, then, constitutes static eval-
uation for game configuration, the static evaluation
which can be used in search algorithms.

In this paper we apply the method using better-choice
relation to increase pruning effect in the alpha-beta
method, which is a lookahead method for game-trees.
The alpha-beta method reduces the number of nodes
by keeping and updating lower and upper bounds of
static evaluation. Pruning effect depends on accidental
order of visited nodes. We try to induce a rule to sort
visited nodes to yield effective pruning, by using the
method of better-choice relation and ILP.

The following section revisits the alpha-beta method
and detects conditions that nodes are pruned during
execution of the method. Then, we specify our ILP
problem. Section 3 gives a procedure to apply induced
rules, logic programs of the better-choice relation, to
execution of the alpha-beta method. Then, in Sec-
tion 5, we report experimental results of the proposed
method in othello. Section 6 discusses merits of the
method and remained issues.



Table 1: The Mini-Max Method.

Choose a move from a given board b of the fitst player’s
turn:

1. Counstruct a game-tree of depth d, i.e., a tree which
has a root b, has depth d and consists of

(a) as anode, a board configuration, and
(b) as an arrow from one board b1 to another bz, a
move m which brings by to bs.
2. For each leaf, calculate its static evaluation.

3. Give each board of the first player’s turn the maxi-
mum evaluation of its children nodes as its evaluation.

4. Give each board of the second player’s turn the mini-
mum evaluation of its children nodes as its evaluation.

. Choose a move or a branch from the board b that
leads to the board with the maximum evaluation, as
an appropriate move.

Ut

2 THE ALPHA-BETA METHOD
AND AN ORDER INDUCTION
PROBLEM

We assume a strategic, complete information, deter-
ministic game played by two persons, such as chess
and othello. Two players, called the first and the sec-
ond players, take moves by turns. An player wins when
a move of its turn brings a status of game to satisfy a
given condition. We call the status a goal.

The alpha-beta method is an algorithm to find an ap-
propriate move. The appropriate move is the bestin a
sense of looking a restricted depth of game-trees ahead
and of a given heuristic function. The algorithm visits
only necessary nodes or prunes unnecessary nodes by
using property of game-trees. In the rest of this section
we revisit the mini-max method and the alpha-heta
method.

We assume a static evaluator for board configuration.
The evaluator estimates the quality of board from
the side of the first player by a number, that is, the
first player hopeslarge numbers and the second player
hopes small numbers.

The mmi-max method chooses an appropriate move
for a board b of the first player’s turn using a lookahead
procedure. The method is shown in Table 1. It takes
lookahead for all boards that can be reached in a given
depth from a current board.

The alpha-beta method, shown in Table 2, calculates
static evaluation and finds an appropriate move as
the mini-max method does, but prunes unnecessary
boards. It uses two variables o and 3 to keep lower

No license: PDF produced by PSiill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Table 2: The Alpha-Beta Method.

alpha-beta(b, a, 3)

1 If bis at depth bound, return the static evaluation of
b; else continue.

2 Let by,---,b, bethe successors of b, set k:= 1, and if
bis a MAX node, go to step 3 ; else go to step 3.

3 Set o := max{a,alpha-beta(by, a, 8)).
4 If o> B return 3 ; else contime.

5 Ifk =nreturn o ; else set k := k+1 and go to step 3.
3’ Set 8 := min(3, alpha-beta(by, a, 3)).

4" T o> B return o ; else continue.

5" Ifk =nreturn 3 ; else set k:= k+1 and go to step 3.

and upper bounds of evaluation.
cessor nodes of a node b,

By examining suc-

e the lower bound a is updated, if b is a MAX node
or of the first player’s turn, and

e the upper bound 3 is updated, if b is a MIN node
or of the second player’s turn.

There are two cases when the method prunes nodes:

Case 1 At a board of the first player’s turn, if a suc-
cessor node gives a larger evaluation than the up-
per bound 3, other successors need not to be vis-
ited.

Case 2 At a board of the second player’s turn, if a
successor node gives a smaller evaluation than the
lower bound «, other successors need not to be
visited.

Because of these pruning conditions, the order of nodes
is important, the nodes which are successor nodes of
the node b, which the procedure is called with. That
is, the larger update for boundsis made, the larger the
possibility to have pruning has. To control the order
for effective pruning has been a topic of the alpha-beta
method[Nilsson, 1998]. For example, an easy way to
control the order is to sort successor nodes by the static
evaluation.

We apply a relational learning approach, or an ILP
approach, to sort successor nodes, that is, we try to
imduce rules to sort nodes in order to have effective
pruning. We expect the following advantages of this
approach:

e ILP is enough powerful to deal with complex
structural data in domains of games. A board
configuration is expressed using a list whose ele-
ments are terms expressing pieces (ie., their po-



sitions and types). Moves made by players are
also expressed by first-order terms. These com-
plex data are dealt with first-order expressions.

e We may have several rules to sort nodes, depend-
ing on board configurations. First-order formulae
can describe rules that evaluate moves depending
on a parameter of board expressed by complex
first-order terms.

e Induced rules are easily readable and modified,
because of the readability of first-order formulae.

3 AN ILP METHOD WITH THE
better-choice RELATION AND
ORDER INDUCTION

We have proposed a method of order induction
based on a binary relation better-choice in the previ-
ous works [Inuzuka at al., 1997a, Inuzuka et al., 1998,
Nakano et al., 1998] on learning game heuristics.

In the previous work we need to induce rules that
decide the most preferable move among many possi-
ble moves for each game situation. For this purpose,
rules have to evaluate moves and sort them based
on the evaluation. It is difficult to induce this kind
of rules using relational learning framework. Instead
of inducing such rules, we defined and induced a bi-
nary relation better-choice, which is a pair-wise rela-
tion among moves with a parameter of board configu-
ration or game situation.

For a hoard configuration b and two possible moves
my; and m,, better-choice(b,m,m,) is true if and
only if m, is better than m, at the board config-
uration b, in order to reach a game solution. In-
stances of this relation are collected from an experience
of game execution and used for induction. Induced
rules (or logic programs) of better-choice are used to
calculate the evaluation of moves for future games.
In [Inuzuka at al., 1997a] and [Nakano et al., 1998] we
applied this method to solve the eight puzzles and
shogi (i.e., Japanese chess) mating problems.

For the purpose of this paper we apply induction of the
better-choice relation to induce rules of sorting succes-
sor nodes of the alpha-beta method in order to have
effective pruning.

We intuitively define the better-choice relation as fol-
lows. For a board configuration b and two possible
moves m; and ms, better-choice(b, m;,m,) is true if
and only if m; is more plausible to have large evalu-
ation than m., at the board configuration b, or if m,
should be visited earlier (later) to have large pruning
effect than my when b is a MAX node (MIN node,
respectively). Note that the better-choice relation is
defined depending on a given static evaluation.
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Obeying this definition, we can collect examples of the
relation from search execution with game-trees as fol-
lows. Here, we assume that we use a heuristic func-
tion h for static evaluation and apply a depth d for
the depth of lookahead. For each node b of a game-
tree, we assign its successor nodes b1,-- -, b, evalua-
tion v(b1),--,v(by) by the mini-max method, where
bi, -, by are brought by possible moves m1, -+, mn
from b. Then, an instance,

better-choice(b,m;,m;), i,j € {1,---,n}, i #j (1)

is a positive example of the relation if v(b;) > v(b;),
and is negative otherwise. For each node with n possi-
ble moves, n(n — 1)/2 positive examples and the same
number of negative ones are generated.

All examples for nodes and of game-trees are merged
to induce alogic program that defines the better-choice
relation.

4 APPLYING better-choice TO THE
ALPHA-BETA METHOD

Although the better-choice relation is clearly defined
as a total order relation among possible moves with
a board parameter, we can not expect that a logic
program induced from collected examples by an ILP
algorithm gives neither a total order relation nor even
a partial order relation. In [Inuzuka at al., 1997a,
Nakano et al., 1998] we proposed a method to calcu-
late points for preference of moves based on an induced
relation. In the method we defined a plausibility flow
of preference of moves to be visited earlier, and points
were calculated as a stationary status of the flow. We
used the points as an evaluation of board configura-
tion. We, however, do not need evaluation or points
for the purpose of this paper. We need only order of
moves. We used an easier method to calculate order
among mnoves.

Let b be a board configuration and M be a set of all
possible moves on b. Then, we define the following
value wy(m), called a winning point, of a move m € M
against other moves.

!
)€
wp(m) = ’{T’[ —{m}

where |A| denotes the number of elements in A. We
take the order of the winning point for the order of
moves, or order of the successor nodes caused by the
moves. This counts the moves that are not better than
a move. For the case that two moves take the same
winning points, we modify this and define a total order
> as follows:

better — choice(b, m,m’)
= true ’

my =y my when wy(my) > wy(my), or when
wy(my ) = wy(my) and wy(my ) 3 wy(msy),



where 7 is a given total order. We chose the lexico-
graphic order for J. The order >, of course, always
give a total order among possible moves. When an
mduced program is a definition of a total order, the
mcreasing order by >, is exactly the same as the total
order. The procedure using winning points is not only
the way to make a total order, but we used this for its
sim plicity.

We replace Step 2 of Table 2 by the following lines, in
order to build induced rulesin the alpha-beta method.

2 Let by,---, b, be the successors of b, the succes-
sors which are sorted in the increasing (decreas-
ing) order by >, when b is a MAX node (MIN
node, respectively). Set k:=1, and if bis a MAX
node, go to step 3 ; else go to step 3'.

We can guarantee that this replacement does not
change results of search, except cases that two boards
have the same evaluation. For the exceptional cases,
the proposed method may changes results, because the
sorting method gives an order even among two nodes
with the same evaluation.

We can restrict the replacement of lines in Table 2
for only initial several levels of calls. The alpha-beta
method is called recursively up to a given depth for
every evaluation of nodes. The calculation of order
takes certain amount of time cost and so it is an idea
to apply the procedure to only the first a few levels of
recursion. Note that in this case we apply the sorting
procedure every call of the alpha-beta procedure but
only the first a few levels of recursion.

5 EXPERIMENTS AND RESULTS

We conducted experiments to play othello using the
alpha-beta method with the proposed sorting method.
An outline of the experiment procedure is described as
follows.

1. Let two computer players play othello game,
called a traming game, once. Both player use the
mini-max method with a given heuristic function
for static evaluation to decide their moves. His-
tory of the play is recorded.

2. Generate positive and negative examples of
better-choice relation for all nodes visited during
the play, using Rule (1).

3. Induce a logic program of better-choice relation
from collected examples and a given set of back-
ground knowledge.

4. Again, let two computer players play another
game of othello, the players who use alpha-beta
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Table 3: A Part of Background Knowledge.

predicates explan ation
zero(+N) N is zero.
lt(+ N, +N,) Ny < N,.

color-of-this-turn

(+B, -C)

C is color of a piece to be
placed im board B in this
turn.

color-of-another-turn

(+B, -C)

C is color of a piece to be
placed im board B in this
turn.

N is the number of pieces of
color C on the board B.

number-of-pieces

(+Ca +37 _j\/')

remain-places N is the number of places

(+B, —N) not occupied by any piece,
on the board B.
corner(+P) P is at a corner

on-edge(+P)

P is on an edge

There are many (more
than a threshold) oppo-
nent’s pieces (wrt. color C)
around P on B.

many-opponent’s-pieces

(+B,+P,+C)

inner-than(+ P, + P,)

Py is an mner place than P,
( Py isnearer to the center of

the board than Ps.)

Table 4: Clauses in an Induced Logic Program.

Clause 1

better-choice( Xy, X7, X,) : —
color-of-this-turn (X, X3),
color-of-another-turn( Xy, X, ),
on-edge(X), number-of-pieces( X3, Xy, Xs ),
number-of-pieces(X,, X¢, X7 ), It(X, X7),
inner-than(X,, X;).

Explanation: When there are more pieces of oppo-
nent’s color than ours on the board, a place on an edge
is preferred to an inner place.

Clause 2

better-choice( Xy, X, X5) : —
color-of-this-turn (Xg, X'3), remain-places( X, X5),
on-edge(X), not-on-edge(X,),
number-of-pieces( X5, Xy, X ), It( X, X5).

Explanation: When the number of places not occu-
pied by any pieces is larger that the number of pieces
of our color on the board, a place not on an edge is
preferred to a place on an edge.




method with the sorting method using the better-
choice relation. Observe the number of nodes vis-
ited during the play. For comparison, the number
of nodes visited by normal alpha-beta method is
also observed.

For our experiment, we set the depth oflookahead five.
We prepared two heuristic functions, that is, two dif-
ferent experiments were conducted. For adaptation of
induced logic programs (Step 4 above), we applied the
sorting procedure only to the first level of recursion of
the alpha-beta procedure. We let two computer play-
ers play 50 whole games of othello from randomly gen-
erated initial board configurations where three black
pieces and two white pieces are placed at random.

A part of background knowledge that we used for in-
duction is shown in Table 3. Predicates are all sim-
ple predicates, truth of which is calculated easily. In
the table, symbols N, B, C' and P denote predicate’s
arguments with types integers, board configurations,
colors (white or black), and moves (or places to be put
a piece), respectively.

We

used an ILP algorithm FOIL-I[Inuzuka et al., 1996,
Inuzuka et al, 1997b], which is a derivative of ome
of the successful earlier top-down ILP system
FOIL[Quinlan, 1990, Quinlan, 1993]. FOIL-I can
use intentional definition of relations as background
knowledge, or any logic programs with type and mode
mformation.

Table 4 shows two example clausesin an induced logic
program of better-choice relation. The program com-
pares two moves (or places to be put) with a board
parameter.

Figure 1 summarizes results of experiments. Two
graphs correspond to two given heuristic functions. A
graph plots the number of games that had each reduc-
tion percentage, the reduction percentage which is a
rate of the number of nodes visited during the game
with proposed method against the normal alpha-beta
method. The total number of games is 50 for each
graph. —10% on the X-axis means 10% reduction for
visited nodes, and +10% means 10% increase. We ob-
serve that approximately 80% of games had reduction
of visited nodes by the method. The average reduction
percentages were —4.0+ 5.5% and —4.0 £9.4% for the
two heuristic functions.

6 CONCLUSIONS

We proposed and inspected a method to use an ILP
technique to learn rules to sort nodes expanded in the
alpha-beta method in order to have effective pruning.
In order to reduce this order induction method into a
classification problem, we used the better-choice rela-
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Figure 1: Results of the Experiments.
Graphs show histograms of reduction percentages of
visited nodes by the proposed method.



tion, which was introduced for game heuristics induc-
tion in the previous paper. The experiments showed
that the proposed method works to have expected
rules.

Although by the advantages of ILP framework, we
can use any predicates described in logic programs,
we should use inexpensive predicates. We also take
care for mduction of recursive logic programs. If we
allow an ILP system to induce recursive logic program,
it may induce as a definition of better-choice relation
a look ahead program. This program is not our aim
for sorting procedure. We should restrict predicates
and logic programs into shallow predicates, i.e., pred-
icates only depending on board information without

lookahead.

In this paper weinspected only a basic functionality of
the idea, and the following two issues should be taken
into consideration for enhancement of the method:

1. In the experiment we applied induced rules only to
the first depth of lookahead. We should inspect
the effect when we apply induced rules further
depth, and also the trade off between effect of
depth and computation overhead.

2. We dealt with all of examples collected from train-
ing games as a uniform sample set, and induced
rules from the examples. However, they include
examples for different stages of games, i.e., the
begmning, middle, and the final stages of games.
We may need different criteria, or rules to sort
game configurations, depending on the stages. We
should consider this factor to induce rules.

To see the effect of the proposing method we also need
other experiments to compare other method for sort-
ing. These remain for future work. Application to
other games and study on effect of background knowl-
edge also remains for future work.
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