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Abstract

The success of the alpha-beta algorithm in game-playing has shown its value for problem solving in
artificial intelligence, especially in the domain of two-person zero-sum games with perfect-information.
However, there exist different algorithms for game-tree search. This paper describes and assesses those
proposed alternatives according to how they try to overcome the imitations of alpha-beta. We conclude
that for computer chess no practical alternative exists, but many promising ideas have good potential to
change that in the future.

1 Introduction and Motivation

Conventional search methods, such as A* or alpha-beta, are powerful artificial intelligence (AI) techniques.
They are appealing because of their algorithmic simplicity and clear separation of search and knowledge.
Describing the basic alpha-beta algorithm takes only a few lines of code, and all the domain-dependent
knowledge is encoded in a few functions called by a generic search engine. Additionally, the depth-first
manner of exploring the search tree imposes only linear with the depth of the tree - an appealing property.

However, several (perceived) problems with the text-book description (see [KM75] for alpha-beta) of the
conventional methods led researchers to explore better ways to traverse search spaces. Focusing on two-player
search domains, particularly chess, this paper surveys these proposals made during the past decades. Special
attention is paid to the practicability of these approaches and their impact on high-performance programs.

This paper is not intended to be an evaluation of the ideas and proposals made, neither empirically, nor
theoretically. In the authors opinion, neither is possible in a meaningful way. Empirical evaluation would
need fully tuned and enhanced versions of these algorithms and even solving this startling task, the results
would be domain specific. The often suggested comparison on artificial game trees would produce equally
artificial results of little importance to implementations for real-world domains, since each of the underlying
search spaces exhibits very special properties. A theoretical comparison could give insight into the general
complexities of the algorithms. However, they are of little meaning since conveniently ignored constants
might be the key issue to success for practical implementations.

What is left? A critical review of many promising ideas as they relate to alpha-beta. An exact description
of each algorithm is beyond the scope of the paper and the interested reader is referred to the original paper(s).
The author hopes that this survey will help to sustain, maybe even revitalize, interest in those promising
ideas that have, due to their immaturity, difficulty to compete with the domain-monopolizing, many-fold
enhanced and fine-tuned alpha-beta algorithm.

1.1 Problems of Alpha-Beta

The simplicity and elegance of alpha-beta has a price; certain assumptions and simplifications are made that
may cause disadvantageous properties. Every two-person zero-sum perfect-information game has a game-
theoretic value, the result of the game if both players play perfectly. By traversing the entire game tree using
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1 INTRODUCTION AND MOTIVATION 2

alpha-beta and using the game results at the leaf nodes (win, loss and possibly draw), this game-theoretic
value can be determined.

The alpha-beta algorithm reflects the assumption of a complete game tree traversal: perfect evaluation
of the leaf nodes and a simple minimax propagation of those values back up the tree. Because of time
constraints however, alpha-beta faces a depth limit when used in practice, voiding the key assumption of a
complete game tree traversal. This also results in the loss of the game-theoretic meaning of the propagated
values, since heuristic functions are used to estimate the game theoretic value of a node at the fringe of the
search tree. This raises the following, related issues:

Heuristic Error: The search engine is not aware of the possible error contained in the heuristic evaluation
of problem states. It assumes those values to be perfect, but if they were, search would not be necessary.

Scalar Value: All the domain-dependent knowledge is compressed into one scalar value. This necessarily
loses information that is potentially useful for the search.

Expand Next: Alpha-beta expands nodes in a depth-first manner that depends only on the order the
successors of a node are generated. The depth-first manner of exploring the tree, although restricting
the space requirements, limits the choice of which node to expand next!.

Bad Lines: Alpha-beta search, in its effort to prove the minimax value of the root node, expands at least a
solution tree [KMT75] of a fixed depth, thereby pursuing relevant lines as well as irrelevant lines to the
same depth. One would like to expand lines to lesser depth that are irrelevant or “bad” and instead
invest the effort into searching relevant or ” interesting” hnes deeper.

Insurance: By proving the minimax value of a search tree to a certain depth, alpha-beta runs no risk of
missing anything that is visible within this search depth. Every successor issearched to the same depth
- insurance that alpha-beta does not miss anything to that depth. Selective algorithms distribute their
effort among different parts of the tree, concentrating effort in “relevant” lines. Falsely judging a line
as “irrelevant” can prevent the search from correctly assessing the situation 2. It seems that insurance
is a strength of alpha-beta.

Value Backup: Conventional minimax backup rules (as used by alpha-beta) take only the maximum (min-
imum) of all the values of the successors into account. This is correct if game-theoretic values are
propagated. However, since those values may be erroneous (see Heuristic Error), lines that lead to
several good alternatives are preferable over lines having only one. Simply calculating minima and
maxima does not reflect this reasoning.

Stopping: If the task of the search is to suggest one of many possible successors, it is sufficient to determine
the best. Even considering alpha-beta enhanced with iterative deepening selects such a “best” successor
with every iteration. It has no measure of confidence for that selection that could be used to decide
when to stop the search. For standard alpha-beta the question is simply how deep to search.

Opponent: Minimax-like algorithms assume that both players of the game use the same heuristics. Since
the program’s heuristics are not perfect, there might be better ones used by the opponent m which
case we are doomed to make mistakes, which the opponent can exploit to win. In the other case (the
opponent uses inferior heuristics), to assume the opponent is playing perfectly will cause us to miss
chances to lead the opponent into traps.

Insumance might be an important advantage for alpha-beta. It appears that the poor quality of our
knowledge favors methods with good insurance. On the other hand, methods that rely on high quality of
knowledge to guide the search might find this knowledge inappropriately poor (over-generalized, erroneous,
ete.).

LA gain, this statement refers to alpha-betain its text-book formulation, ignoring enhancements such as move ordering. On
the other hand, traditional best-first searches can pick nodes anywhere in the tree to expand next.
2For example, if a Hlunder turns out to be a sacrifice.
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1.2 Enhancements of Alpha-Beta

After listing all the above issues about alpha-beta, one could be surprised how well it performs in domains
such as chess, checkers and Othello. However, it is necessary to stress again that the above listed deficiencies
of alpha-beta are considering its basic formulation as given in [KM75]. The following enhancements of alpha-
beta greatly increase the efficiency of practical alpha-beta implementations for many domains. Nonetheless,
these problems still exist, they are merely masked.

Iterative Deepening: Instead of searching to full depth right away, iterative deepening increases the search
depth by one at a time. This counterintuitive approach allows to store useful information from earlier
iterations to be used i later iterations to increase efficiency and it helps to control the time spent for
a move decision, since search times for a fixed search depth vary significantly for different problems.
This is how practical implementations of alpha-beta address the issue of Stopping. This is by no means
an optimal solution, since it only helps to control that a set time limit is not exceeded.

Move Ordering: Alpha-beta is most efficient if the best successor of each node is searched first. Information
stored from previous iterations helps to achieve nearly optimal move ordering. A good move ordering
allows the search to address the question about which node to Erpand Nezt.

Transposition Tables: Transposition tables aid in the above mentioned task of move ordering by storing
information from iteration to iteration. Furthermore, they allow for the detection of transpositions
(a position in a search that can be reached by different move sequences) and thus eliminate duplicate
search effort.

Partition Search [Gin96] generalizes the concept of transposition tables. Instead of storing information
for individual positions, information for sets of positionsis stored, increasing the usefulness of transpo-
sition tables. Ginsberg could show the merits of Partition Search for bridge, but no successful attempt
to apply this algorithm to chess has been reported.

Forward Pruning: The null-move heuristic is one chess-specific forward-pruning heuristic that is derived
from the observation that it is almost always better to make a move than to pass. This enhancement
decreases the search depth if two moves in a row by one player do not help to bring the value of a
position back into the alpha-beta search window. This powerful heuristic, used recursively throughout
the search tree, effectively decreases the search depth in “bad” lines, thus addressing the issue of Bad
Lines. Other domains favor different methods, such as ProbCut in Othello [Bur95].

Search Extensions: Domain-dependent (such as check extensions) and domain-independent (singular ex-
tensions) knowledge can be used to increase the search depth for certain lines of play. Search extensions
also address the Bad Line problem.

Null-Window Searches: The narrower the search window, the more efficient alpha-beta is. Null-window
searches (o + 1 = f3) combined with a good move ordering improve the efficiency of alpha-beta,
effectively pruning or limiting the amount of search effort spent in “bad” lines and thus tackling the
Bad Line problem.

1.3 Conclusions

The above enhancements reduce, to some extent, the shortcomings of the basic alpha-beta algorithm. How-
ever, the exponential growth of the search tree inherently limits how deep alpha-beta can search, even with
all the enhancements above. Ever increasing machine power should not be the only source of performance
improvements. With diminishing retums for additional search depth on the horizon [JSBT97], selective
methods and additional knowledge become more and more interesting as either enhancements to alpha-beta
or even as completely new algorithms.

3Plaat shows [PSPdB96] that for fixed-depth searches, one can implement a best-first minim ax algorithm using alpha-beta
with null-window searches and transposition tables.
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2 Alternative Approaches

The literature provides alarge body of search-related papers that suggest different ways to search two-person
zero-sum perfect-information games. Here, each method is presented by its general idea, how the authors
suggest to incorporate the idea in an algorithm and what the advantages/disadvantages of the proposed
algorithm are.

The subsections divide the methods into five groups according to the dominant feature of the method:
Backup Rule, Node Value Representation, Expand Method and Opponent Modeling. Note that this grouping
is subjective, but allows a more structured presentation than purely chronological ordering would. Within
each subsection the methods are described in chronological order according to publishing date of the earliest
versions of those methods.

2.1 Backup Rule

This subsection discusses methods that propose new backup rules. Methods using different backup rules
because they work with non-scalar values are described in section 2.2.

2.1.1 M&N-Backup Procedure

This proposal by Slagle and Dixon [SD69] was formulated to overcome the problem with the Value Backup.
They propose a backup function that uses the M and N best successor values of a node for max and min
nodes, respectively. Intuitively expressed, Slagle and Dixon tried to find a way to express the notion that it
is more desirable to have more good choices at a node than less. The backup function can be any function
suitable for the domain. Note that minimax is one special case of this method.

The algorithm is similar to the minimax algorithm. However, one could think of using this idea as a
backup procedure in other search algorithms as well.

This approach addresses the issue of Value Backup. Unfortunately, enhancements such as alpha-beta
cutoffs might not be usable, since all the node values need to be true values and not just bounds.

2.1.2 Product-Propagation Procedure

An evaluation function does not necessarily return a game-theoretic value nor an absolute value indicating
the goodness of a position. It could also return the probability of this position to be a (forced) win. Under
the assumption of independence of the values of sibling nodes it is possible to apply the rules of probability
theory as suggested by Pearl [Pea81].

This method is a backup procedure only and not a complete algorithm. The backup rule, called product-
propagation rule; is the following. For max nodes the probability of being a win is

1= H(l - pi)
and for min nodes being a win node the probability is
[T,

where the p; are the probabilities for the successors to be a win node.

It is rather easy to transform the output of an evaluation function such that it returns (pseudo) prob-
abilities between 0 and 1. However, the assumption of independence of the evaluation of sibling nodes is
generally attacked as being unrealistic. Unfortunately, this backup rule is not useful if some of the successors
are evaluated with bounds (as alpha-beta does).

2.1.3 Average Propagation

Nau, Purdon and Tzeng [NPH86] argue that since both minimax propagation and product propagation have
their justification in actual game playing and search models, an average of both propagations could be useful.
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Again, the backup procedure is just part of an algorithm. The proposal is to propagate the average of
minimax backup value and the product-propagation value.

Nau, Purdon and Tzeng argue that the structure of the game and the evaluation function decide which
backup procedure works best.

2.1.4 Min/Max-approximation

The basic idea behind Rivest’s approach [Riv87] is to penalize each move in the search tree. The penalty
is higher for “bad” moves than for “good” moves. The algorithm then finds the leaf node with the least
cumulative penalty along the path from the root to this leaf and expands it, because this is the leaf the
value of the root most heavily depends on. To allow one to compute the partial derivative of the root value
as a function of the value of each of the leaf nodes, the traditional min and max functions are replaced by
derivable approximations.

The algorithm traverses the tree iteratively, going down to the subtree where the leaf with the lowest
cumulative penalty is situated. This leaf is expanded and going up the tree, necessary values in the tree
are updated. This is similarly used i other algorithms as well, such as B* and conspiracy numbers. The
difference is in using the penalty of the moves to find the leaf node to expand next.

How are the penalties for each move determined? Generalized mean values (p-mean) are used to approx-
imate max and min functions in the following way*:

My(a, as, ..., an) = (= > (ah))M
i=1

With p — oo this function approximates the max function and with p — —oo it approximates the
min function. The advantage of this generalized p-mean function is its sensitivity to the values of all the
successors and not just to the largest (max) or smallest (min) values. Using generalized p-mean functions
enables the search to select moves that are not necessarily best in the sense of minimax searches, but have
many good alternatives (not just one best that might be mis-evaluated).

Since the values of all the successors of a node influence its value if the above formula is used, a dependency
measure for each successor can be calculated. It expresses how much the parent depends on the value of each
successor. A penalty is given to each successor; the less dependent a parent is on the value of a successor,
the greater is this penalty. The algorithm will expand the leaf node with the smallest penalty summed over
the path that leads from the root to the leaf.

This approach aims to overcome the Value Backup problem. The min-max approximation bases the value
of a parent on the values of all its successors. Unfortunately, positions are penalized where horrible moves,
such as queen blunders or help-mates, are possible, because all successors of a node influence the value of
a node. The algorithm has a better understanding of which node to Erpand Nezt, because of the iterative
traversal of the tree and the penalties indicating where it is worthwhile to concentrate search effort. The
expansion strategy proposed here assumes the change of a value of a leaf is equally likely throughout the
tree, which is obviously not true. Therefore, the expansion will not necessarily make the value of the root
more reliable.

This idea was implemented only for Connect-4. No chess related results are available.

2.2 Node Value Representation
2.2.1 B*

B* was proposed by Berliner [Ber79] and has since then been revised [BM 95| to overcome problems found
with the original formulation.

The fundamental insight leading to B* was that it is not necessary to have the exact minimax values of
the successors of the root to find the best move. If we can generate bounds for the minimax value of those
successors, then proving that the lower bound of the best successor i1s greater or equal to the upper bounds
of all the alternatives is sufficient to determine the best successor of the root®.

4Tn our case the a; are the values of the successors of a node.

5However clever that might seem, alpha-beta is not computing the minimax values either, but generates upper bounds for
all the moves but the first, effectively cashingin on most of the possible tree size reduction.
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The goal of establishing a lower bound of the best successor that is greater or equal to the upper bound
of all altermnatives is called separation. There 1s no need to search any further, once separation is established,
because the best successor of the root has been found. Furthermore, B* is a best-first search. The bound
information is used to traverse the tree and expand the most relevant leaf node.

Over time this clear and simple 1dea was engineered to accommodate other enhancements to make the
algorithm work. The basic idea remains to either push the best successor’s lower bound above the best
upper bound of the alternatives (PROVEBEST) or to lower the upper bounds of the alternatives (DIS-
PROVEREST). The initial paper suggests static evaluation functions as optimistic/pessimistic estimators.
Later, null-move searches were proposed.

This short sketch of the algorithm is not intended to be complete, but to merely reflect the basic ideas
behind B*. The current B* implementation as given in [BM95] is elaborate and is largely due to attempts
to overcome problems encountered with the initial design.

Separation is a natural way to solve Stopping. Once the optimistic values of all the alternatives are less
than the pessimistic value of the best move there is no point to search further. The B*-algorithm gives also a
solution to the Frxpand Next problem. To achieve separation, B* uses the potential of a state. The potential
of a state is the likelihood that the value of a state improves if expanded further.

In the original paper, with the introduction of bounds, the B*-algorithm was the first to break with the
tradition of single scalars as node evaluations in search algorithms. The current node representation in the
algorithm of B* shows that Berliner does not consider the two bounds of the initial paper a solution to
the Single Value issue. His current implementation uses the bounds, one realistic value and two additional
probabilities. This opinion results from his experiences with the work of Palay ([Pal85], see section 2.2.2).
Using searches as evaluation functions at the leaf nodes of the B*-tree increases the insurance against B*
missing something.

2.2.2 Probabilistic B*

Palay picked the work of Berliner up and generalized the original B*-idea [Pal85]. Instead of using bounds®
and thus implying a uniform distribution of the random variable delphic value”, Probabilistic B¥ (PB*) uses
a probability distribution to describe the location of the delphic value.

Palay introduced two phases to the B* algorithm, SELECT and VERIFY, instead of the two strategies
in the original B*. First, the SELECT phase selects the best move and tries to improve its evaluation, then
the VERIFY phase tries to find a better alternative, thereby hoping to lower the bounds of the alternative
moves. Palay proposed to use null-move searches as an optimistic evaluation function.

Probability distributions are the most general way to address the Scalar Value problem. The intractability
problems Palay discovered with his approach show that this amount of information is too much. The
computational prize is too high compared to the benefits for the search.

Separation® was found to be rather hard to achieve to terminate the search. Therefore, Palay introduces
a relaxed separation criterion, called domination. The domination is a statistical measure that indicates
with what probability one move is better than the best alternative.

Many of Palay’s ideas are used by the new B* algorithm and are implemented in B*-Hitech, a high
performance chess program/machine.

2.2.3 Conspiracy Numbers

The basic idea of this approach proposed by McAllester [McA88] is to record for every node 2 in the search
tree, how many leaf nodes m its subtree have to change their value in order to change the value of node z
to another value v. These numbers (every possible value v for # has such a number) for node # are called
conspiracy numbers, since this is the minimum number of leaf nodes that have to conspire to change the
value of & to v.

The main goal of the algorithm is to make a change of the value of the root node unlikely if further leaf
nodes are expanded. Unlikely means here that more than ¢ nodes have to conspire to change the value v of

6See section 2.2.1 “B*”.

"This term was coined by Palay himself and it refers to the answer of an oracle about the value of a node - such as a deep
search.

8 Separation is explained in section 2.2.1 B*.
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node n to w # v. cis called the conspiracy threshold. The higher ¢ is, the greater the confidence i the value
of the root node. All the values v for a node # that have a conspiracy number less than c¢ are called plausible
values. To achieve a root node value that is unlikely to change, the algorithm can either try to increase or
decrease the value at the root. It is almost irrelevant, whether the algorithm succeeds or not, because it
likely increases the conspiracy numbers of some of the still plausible values of the root node. This leads to
increased conspiracy numbers, possibly beyond ¢, and thus, narrowing the range of plausible values of the
root node.

The algorithm in the formulation of Schaeffer [Sch90] chooses in each iteration between the options of
increasing or decreasing the root value by looking at where more plausible values are, above or below the
current minimax value of the root. A target value is set at either the biggest or smallest plausible value of
the root node, depending on if increasing or decreasing the root node value was chosen, respectively. After
deciding on this global strategy, the algorithm has to decide to which subtree to descend to find the leaf
node toexpand. It will always choose the subtree where the goal of increasing or decreasing of the root node
value seems to be easiest, that is where the conspiracy number for the target value is smallest. The leaf node
is expanded and its conspiracy numbers and minimax values are updated. Then the algorithm updates the
conspiracy numbers and minimax values of all ancestors of the expanded leaf node.

The most appealing aspect of this algorithm is that domain-independent knowledge is used to grow the
tree. This knowledge is used to find the next leaf to expand, providing one more possible way to address
the Ezpand Next problem. The algorithm is highly aware of the problem that heuristic values might change.
This is expressed in the idea of the conspiracy numbers—the algorithm’s way to handle Heuristic Error.
Because the conspiracy numbers contain much more information than a single scalar value (they can be
viewed as probabilities), conspiracy-number search also gives an answer to the issue of Scalar Values. The
problem of Stopping appears in a different shape: what is asuitable conspiracy threshold? Ideally, we would
like to make it dependent on the quality of the evaluation function, but we have no idea about this quality
either. Because this algorithm is a highly selective algorithm, Insurance becomes an issue. Some lines are
followed to excessive depth, whereas others get neglected. The tendency to expand forced lines (lines with
few responses for the opponent) can be a problem in solving a problem and /or terminating a search.

One fundamental problem with this algorithm in its current formulationis that the conspiracy numbers do
not take into account that small value changes are more likely than large changes. Implementing conspiracy
numbers soon reveals difficulties: Since we need a conspiracy number for every possible value a node can
have, the space and time requirements are high if the number of possible values is large. Additionally, many
nodes have similar conspirators for the same minimax values - making it difficult for the search to distinguish
between alternatives.

McAllester, fully aware of the problems of conspiracy-number search, developed a new algorithm called
ABC Search [MY93]. Tt is essentially the alpha-beta algorithm that uses the knowledge about conspirators
to decide about the search depth. Another algorithm using the conspiracy idea i1s Lorenz’ Controlled Con-
spiracy Number Search [LRFM95]. With the introduction of targets for conspiracy numbers for values at the
root node, many of the drawbacks and problems of the original conspiracy-number search can be avoided.
Experimental results are promising.

2.2.4 Uncertainty

Horacek [Hor87] proposed a special case of the original B* formulation, enhanced by a weighting factor.
Whenever the evaluation function discovers difficulties (dynamic features) with the evaluation of a state,
such as trapped or pinned pieces, it returns a weighted pair of values, where the weight expresses a tendency
towards the value that is more likely. According to Horacek, weighted pairs should be used only in rare
occasions.

The algorithm expands the tree in an alpha-beta-like way. A new backup rule is used to accommodate
the weighted pairs. The move selection at the root will deal with the weighted pairs in case they reach the
top of the search tree.

Positions evaluated with weighted pairs can be thought of as hard to understand. The algorithm under-
stands which positions are easy to evaluate and which are not, enabling it to prefer those it understands. This
is one way to address the Heuristic Ermor and Scalar Value problems. Both values are similar to pessimistic
and optimistic evaluations and the weight determines where the realistic value is. It 1s not clear what the
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advantages of this notation are compared to the new B* or fuzzy number notation.
This idea was implemented in the chess program Merlin.

2.2.5 Meta-Greedy Selective Search

The idea developed by Russel and Wefald [RW89] is to apply decision theory to search algorithms to give
the algorithm a thorough understanding of the decisions it has to make. More precisely, if an algorithm
knew the utility of the next search step compared to the cost of the time used to execute this search step, it
could make an intelligent decision whether to stop the search using the result obtained so far or to continue
searching.

The Meta-Greedy Selective Search (MGSS*) algorithm keeps the entire search tree in memory plus a list
of relevant nodes ordered by their minimax value (a relevant node is a node that can, by changing its own
value, change the best successor node of the root). Each iteration of the algorithm takes the first leaf node
from the list and performs the test for termination: If the expected utility of the expansion of this node is
less than the cost of the expected time for expanding this node then the algorithm stops. Otherwise, the
node is expanded, values are propagated up the tree and the relevant successors are inserted into the ordered
list of relevant nodes.

This algorithm deals with Stopping in a natural way. It has an inherent understanding of the value of
time and can relate the value of expected computational results to the value of the expected time of the
computation (given all these values are known). By expanding the node with the highest expected ratio
between utility of the expansion to the time cost for this expansion, the algorithm solves which node to
FExpand Next.

To reason about cost of time, utility of search results and so on, different domain-dependent probabilities
are needed. Extensive statistical experiments have to be conducted to get reliable data. Relevant leaf nodes
exist only if the root node still has conspiracy numbers (see 2.2.3) of one. As soon as this number is greater
than one for all alternative values, the list of relevant nodes is empty. This is an undesired effect. Moreover,
this list does not even contain all conspirators, but only the ones that can change the best node - which are
even fewer nodes.

Except for Russel and Wefald’s implementation there is no other one known. The empirical results
are not very reliable; since both versions, alpha-beta and the proposed algorithm, were “not very carefully

engineered” [RW89].

2.2.6 Bayesian Game Tree Search

This approach (BP) by Baum and Smith [BS97] also uses an evaluation function returning probability
distributions. Different from previous approaches using probabilities; the meaning of the probabilities here
represents the expected change of the value if the search would expand this leaf node. The probability
functions are propagated in the way proposed by Palay. A leaf relevance measure (QSS) is used to grow the
tree such that relevant lines are explored deeper. This leaf relevance measure reflects the influence each leaf
has on the decision theoretic utility of expanding every leaf of the tree.

The algorithm expands a set of nodes at each iteration. This is the top fraction of the nodes with highest
relevance (called Q step size, QSS; for the definition see the original paper). The calculation of this utility
requires influence functions for the changes of leaf nodes for changes at the root. The algorithm stops if the
estimated expansion utility of all nodes is less than the estimated cost of time to expand them.

One innovation lies in the new interpretation of the probability distribution returned by the evaluation
function. Baum and Smith develop a new argument to justify the assumption of independent probability
functions of the successors. They assume that since their function expresses the possible changes of the value
of a node if the node is expanded, which is the error of the evaluation function, this error is independent for
siblings. They argue that even thought this assumption does not hold, the resulting procedure is stronger
than alpha-beta and probability product.

The paper suggests an interesting way to train the evaluation function to return probability functions.
The example positions are divided into buckets before the training and for each of the buckets (determined
by predefined features) a probability function of how the value will change if the search would extend the
node one ply is learned. Additionally developed engineering tricks help to make the proposal efficient in
practise.
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The authors extensively tested PB against alpha-beta and probability product. They conclude that, at
least for Othello, Warri, Kalah and Pearl’s P-Game, PB is the strongest of the three approaches. A number
of questions remain to be answered. Even though transposition tables are not as important in Othello as they
are in chess, why did the authors not implement them and would transposition tables change their results?
Especially if one considers that alpha-beta using iterative deepening without transposition tables can hardly
make use of previous iterations. So far, attempts to implement ProbCut in chess failed. Apparently it is
hard to find reliable estimators for how deeper searches will change the current value of a position. Given
this difficulty, it is hard to believe that one can easily construct an evaluation function for chess that BP
would require.

2.2.7 Fuzzy Numbers

Since the knowledge used in search is imperfect but still gives a certain guideline, it should be possible to
express ideas such as “The approximate value for this node is #”. Furthermore, if we know that the approx-
imate value favors one of the players, we should be able to express this. Certainly, probability functions, as
Palay proposed, are one way of achieving the above desired properties. However, the computational effort
incurred by them is high. Considering the low accuracy of the input probabilities at the leaf nodes it is
questionable if the effort is justified to compute exact probabilities. Using fuzzy numbers [Jun94], offers
a low computational method with reasonable expressiveness. A fuzzy number consists of three parameters
that can be interpreted as pessimistic, realistic and optimistic value.

The new algorithm is a modified alpha-beta algorithm to accommodate the fuzzy numbers as node
evaluations. A new backup procedure, cutoff criterion and best-node selection is needed. The backup
procedure basically maximizes or minimizes (according to the type of node) all three parameters of the fuzzy
numbers thereby creating a new fuzzy number for the parent node. A new best-node selection procedure
was necessary to handle overlapping fuzzy numbers. A risk parameter is applied to resolve conflicts between
several good alternatives. The risk can be chosen according to the game situation.

The low computational cost of dealing with fuzzy numbers® and the higher expressiveness of fuzzy num-
bers compared to scalar values addresses the Single Value problem.

The new backup procedure deals with the problem of Value Backup. The current backup formula is not
satisfying, since other aspects of the Value Backup problem remain to be solved. However, fuzzy numbers
seem to be flexible enough to accommodate more elaborate methods for backup procedures without losing
the advantage of the low computational overhead. This approach overcomes the bonus/penalty problem that
any evaluation function faces producing single scalar values: If it encounters positive and negative features
in the position, the bonuses and penalties tend to cancel each other. Most importantly, fuzzy number
search provides an elegant way to describe quiescence search: If pessimistic and optimistic evaluation are
too far apart, the knowledge can be considered insufficient and a further expansion is beneficial. The main
advantage is the dynamic way to define selectivity, no reiteration is necessary to decide, whether a node
should be expanded. The quality of the evaluation of the node itself is the criterion.

However, it is hard to come up with the optimistic and pessimistic values, just as Berliner discovered i
his work. It is therefore questionable if this method will find its way into a practical application.

2.3 Expand Method
2.3.1 Bandwidth Search

Harris [Har74] departs from the classical formulation of best-first searches such as A* and adds constraints to
the heuristics used. Whereas A* uses an admissible heuristic (a heuristic never overestimating the distance
to the goal), his new constraint on the heuristics h’(n), called bandwidth-heuristics, is the following:

hin)—d <h'(n) < hin)+e

9Creating the fuzzy numberin the evaluation function is “just” a matter of combining the already calculated terms of the
evaluation function in two more ways to get the optimistic and pessimistic values. The backup rule has to take only three
numbers for each successor into account and is not operating over, for example, functions as in PB*.
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2 ALTERNATIVE APPROACHES 10

where d and e are the error bounds of the heuristic. This means that the heuristic h’(n) always guesses the
distance to the goal'® within a certain tolerance zone of the actual distance h(n). Nodes with a value outside
this zone can safely be cut off.

Harris’ algorithm is an adaption of the A* idea to two-person game playing: Each open (not expanded
or leaf) node has associated with it a heuristic value, representing a guess about the distance to the goal,
and a cost, which is the distance from the root to this node. Closed (expanded orinternal) nodes inherit the
values of the “best” of its successors, min nodes receive the minimum and max nodes the maximum value
of the successors. Here the player nodes are min nodes, because we are looking for the shortest path to the
solution.

Expanding a node will expand two plies at a time'!. This way, there will be only one kind of open nodes
(min) and an order between them is possible. The node to expand next is chosen to be the leaf node of the
principal variation. This is not the same as Korf’s best-first minimax [KC94] (see section 2.3.5), because the
cost of getting to the leaves is used here additionally, addressing the Insurance problem.

This algorithm has a very simple stopping criterion. If a node is found that lies within the defined range
of e + d from the optimal goal, the search stops. It is not clear how the idea of finding the shortest win ties
into the picture of game playing. Shorter wins are surely preferable, but not the primary goal of the search
and the cost of a move has no practical meaning (except maybe for time control issues).

Suppose the interpretation of path length to the goal makes sense in the framework of game playing.
Then there is a drawback for this algorithm. We are finding any goal node that is within the range of e + d
from the optimal goal. We might not find an optimal goal and if losing and winning is close enough for the
quality of our evaluation function (d and e are too large) then we might miss a winning move, picking a
losing move instead.

Harris’ algorithm does not assume a perfect evaluation function as alpha-beta does. Therefore, the
algorithm can deal with imperfect heuristics assessing the quality of the goal found by knowing the qualty
of the heuristic function. The way the algorithm determines the node to expand next provides a better
selectivity than alpha-beta and more insurance than most of the selective algorithms (such as best-first
minimax), because the cost of a move is used to eventually prevent the deep branches from being expanded
to excessive depth, giving shallow branches a chance to be looked at.

One more problem is how to determine d and e since we do not have any idea about h. However, if
estimating d and e was possible, then Harris’ proposal could be applicable, possibly cutting down the search
space.

2.3.2 SSS*

Stockman [Sto79] proposes a best-first minimax algorithm called SSS*. SSS* is related to A*, a best-first
search algorithm for single-agent problems (OR graphs). SSS* was adapted to search AND/OR graphs.

Similar to A*, SSS* manipulates an OPEN list of nodes which is sorted in descending order according to
the merit of the nodes. The first node in the list has therefore the highest merit and is the one to expand
next.

SSS* was criticized for being difficult to understand in the original description. But it was proven to
evaluate no more nodes than alpha-beta would. Simulations show that SSS* evaluates significantly less nodes
than alpha-beta. The disadvantages are obvious and the same as in A*: the large memory requirements and
the overhead of maintaining the sorted OPEN list. However, Plaat et.al. [PSPdB96] gives a reformulation of
SSS* using nullkwindow alpha-beta calls (with transposition tables): MT-SSS*. This algorithm is searching
the same leaf nodes in the same order as SSS*. The surprising message is the following: SSS* in the new
formulation using alpha-beta with enhancements overcomes the two SSS* problems, the memory requirement
and the overhead of the OPEN list. Thus, alpha-beta with enhancements searches just as few nodes as the
best-first procedure SSS* if called with the right windows.

10We will come badk to the questionable meaning of this term in the discussion.
11T,eaf nodes in the first level are discarded and alpha-beta cutoffs are used.
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2 ALTERNATIVE APPROACHES 11

2.3.3 Equi-Potential Search

Anantharaman [Ana90] proposes a selective search method, called Equi-Potential Search (EPS) that, unlike
best-first methods that use a list to keep track of the best nodes to expand next, uses a depth-first strategy
and still selectively expands leaf nodes. The algorithm grows the search tree such that all the leaf nodes
have roughly the same potential of improving the move decision when expanded next. Equi-Potential Search
decides whether to expand a leaf node solely on the (heuristic) information available at the leaf node itself
to achieve a depth-first behavior.

Each successive iteration of EPS has a certain effort threshold F associated with it which increases from
iteration to iteration. For each leaf of the search tree two measures are calculated:

S is the probahility of a 1-ply extension of the leaf resulting in a change of the best top-level move multiplied
by the expected benefit from such a move change.

P is the expected cost of a 1-ply extension of the leaf, including the expected cost of any resulting re-search
of sibling nodes of any ancestor of this leaf.

The ratio S/ P gives a cost-benefit measure that is compared against the effort threshold E of the current
iteration. If S/P < E the leaf node is expanded and the procedure is applied to its successors.

The appealing idea is the depth-first formulation of the algorithm, avoiding all the overheads of priority
queues/lists. Furthermore, EPS can be run to tune itself. The tuning resulted in improved performance.

Some important problems are not addressed in Anantharaman’s work: When should the algorithm stop
increasing E7 What is the maximum effort the algorithm should spend to determine a best move in a
position? How does EPS perform in comparison with alpha-beta?

2.3.4 Singular Extensions

The motivation to the method of singular extensions proposed by Anantharaman, Campbell and Hsu [A CH90]
was tofind a domain-independent and dynamic way to formulate and employ search extensions. If a moveis
much better than any other alternative in a given position (it is singular) and is likely to affect the outcome
of the search if its value changes, this move is researched with increased depth.

This method can be used as an algorithmic enhancement to alpha-beta. It is not an algorithm as such.

The most valuable idea here is the domain-independent way the search is guided to distribute effort
in the search tree. Therefore it is a domain-independent approach to solve the Bad Line issue by adding
more selectivity. However, additional search effort is needed to detect if a move is singular. In [Ana90]
Anantharaman indicates that the large gains reported in the initial paper are only partially reproducible.
He states that singular extensions “seem to just break even” . The additional search effort cancels the gains
for average searches.

2.3.5 Best-First Minimax

The basic idea behind Best-First Minimax as suggested by Korf [KC94] is to always expand the node at the
end of the current principal variation.

The resulting algorithm traverses the tree up and down: down to reach the leaf of the current principal
variation and up to propagate the new values. Some observations help to understand why this algorithm
works: If min had to movelast in the current principal variation then the value of the root tends to decrease,
since the last non-leaf node of the principal variation was a min-node which results in the selection of a
small value. On the other hand, if max had to move last in the current principal variation, the value usually
increases. Thus, regardless of what type of node was expanded last, the principal variation is likely to change,
and therefore the place where the next node is expanded is changed too.

Korf formulates a new way to find the next node to expand. The simplicity of the algorithm is appealing,
however, i1t is doubtful if this idea can solve the Fxpand Next problem, because of problemswith the Insurance.
The algorithm might miss something in subtrees that are off the principal variation because of the high
selectivity. Korf’s results consequently favor a hy brid version of best-first minimax and alpha-beta to combine
the thoroughness of alpha-beta at the root and the selectivity of best-first minimax at the leaves. The
algorithm practically depends on the odd-even effect. A nearly perfect (static) evaluation function (meaning:
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2 ALTERNATIVE APPROACHES 12

not producing the odd-even effect) would not allow the algorithm to switch the principal variation often
enough to distribute effort between different subtrees.

2.4 Opponent Modeling

Alpha-beta unrealistically assumes that the opponent uses the same methods for determining the best move.
That includes, among others, the evaluation function, search extension strategies, back-up rules, search
depths and other parameters of the decision making process of the opponent. Following are methods that
try to overcome this simplifying assumption of alpha-beta.

2.4.1 *-Min

Whereas minimax-based algorithms assume that the opponent is rmnimizing the same values as the player
maximizes using the same evaluation function, the *-Mmn procedure as proposed by Reibman and Ballard
[RB83] treats min nodes as chance nodes. This means, because the opponent has a different evaluation
function he will make different decisions than the player.

Instead of propagating the minimum of all successors as minimax does, at min nodes *-Min propagates
the weighted sum of the values of all b successors

b
PsMy + (1= Pg) PsMy + ...+ (1= Ps)"™" PsM, = Ps(y_(1— Ps)" "' M,),

n=1

where Ps is called the predicted strength of the weaker and fallible opponent. The predicted strength is the
probability that given a choice of b moves, the opponent will choose the n” best move over the (n + l)th
best move.

This model is rather unrealistic. The randomization does not model the actual decision making process
of the opponent, especially its own evaluation function. Bounds are not sufficient for this model, which
makes alpha-beta cutoffs impossible.

2.4.2 ProbiMax

In an endgameit is sometimes important to reach mate positions within a certain number of moves (because
of the 50-move rule). Jansen proposes an algorithm to exploit the human fallibility by deliberately playing
suboptimal moves to make it harder for the human opponent to reach the game theoretic outcome of the
position within the required number of moves. The program is assumed to have perfect knowledge by means
of an endgame database.

Instead of modeling the opponent’s move decision using the minimum as minimax-like algorithms do,
Jansen [Jan93] proposes the probabilistic model ProbiMax. The value of a min node is modeled by

V(p)= Z%V(pi),

where V(p) is the value of a position, p; are the successors of p and w; is the probability of position p; being
chosen by the opponent.
The value of a max node 1s given by the following formula

Vip) = max Vipi).
(») ©:D (pi)2D(p)—¢ ()

D(p;) is the depth to the leaf node of the game tree, thus a mate or stale-mate position. The player is only
considering moves that risk to lower the distance D(p;) to this goal node by a maximum of §. The idea here
is to avoid positions that seem to be good, but are too close to the undesired outcome of the game compared
to the maximal distance.

The model of the opponent needs to be rather accurate, to determine all the probabilities w; for the
possible positions p; well enough for this proposal to work. It is not clear how to obtain even approximations
of these probabilities.
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2.4.3 Speculative Play

Jansen [Jan93] proposes speculative play for the program playing the weak side but with perfect knowledge
provided by an endgame database. The proposal consists of choosing, out of several optimal moves, the
one that has the smallest relative number of optimal replies for the opponent. Uiterwijk and van den Herik
[UvdH94] present similar ideas. There a “bonus/malus” schema is developed which encourages to play moves
that have only few good responses for the opponent in mate-like positions.

There is no complete algorithm to Jansen’s idea, except for the mathematics. Uiterwijk’s proposal to
add a bonus can also be viewed as a special backup mechanism rather than a completely new algorithm.

Jansen’s approach is only useful if perfect knowledge is available. For chess, this method is only useful
in the last stages of the game, when endgame databases provide perfect information.

2.4.4 Opponent Model Search

Iida et al. [TUvdHH93] give a new algorithm using the knowledge about the fallible opponent. The idea is
to model the opponent such that one can predict where the opponent makes mistakes and can exploit those
mistakes.

The algorithm has two values for each node. They represent what the player and the opponent think
the value of the node 1s. Leaf nodes are evaluated with both evaluation functions. The backup rules assume
the opponent to play minimax using only the opponent’s values. However, the player uses both, player and
opponent values, to determine what value a parent node should have, thus exploiting possible mistakes of
the opponent.

This algorithm assumes perfect knowledge about the behavior of the opponent by means of evaluation
function and search depth. This is an idealized case.

2.4.5 M*

Carmel and Markovitch [CM96] try to exploit the known weaknesses of a fallible opponent. A player is
modeled by its assumed search depth, evaluation function and possibly a model for its opponent.

Instead of modeling the opponent as the exact opposite to the player, as minimax searches, M* assumes
a possibly different model for the opponent. This means, instead of minimizing over all the successors of an
opponent node, M* is called recursively to return a move that the opponent would make at this opponent
node. The player then assumes this move as given and makes it. The resulting node is treated as a player
node again (like the root). The opponent model can again contain a model for the player, which in turn can
contain a model for the opponent etc.

This schema leads to repeated retraversing of the tree and to multiple evaluation of leaf nodes. Carmel
and Markovitch give a modified version of the algorithm that traverses the tree only once and does all
the evaluations for the multiple models and the backups in one pass. In this algorithm a node has multiple
evaluations and the backup rule keeps track of how the values are propagated such that the M*-value reaches
the root node. Carmel and Markovitch also give a method how to leamn the opponent’s model.

There are several fundamental and technical problems to the proposed methods. Assuming that the
players knew that their opponent is stronger they would either use the knowledge about the opponent’s
evaluation function to become stronger or would not be able to do so because of resource bounds. Therefore,
weaker players cannot benefit from this method. To model the opponent by means of an evaluation function
and search depth assumes the existence of a superset of evaluation features, which is rather unrealistic n
today’s diverse community of playing programs. None of the programs actually uses fixed depth searches,
but relies on extensions and quiescence search. These are additional parameters of the search needed to
adequately model an opponent. Falling into one’s own trap due to insufficiently learned parameters is
possible considering the complexity of the task of modeling the opponent.

Additionally, the extensive use of multiple evaluation functions is computationally expensive and the
described pruning method is less efficient. It is questionable, even assuming all other problems are solved,
if the benefits of modeling the opponent can outweighed the losses due to the higher computational costs.
In addition, this method would fail when used against humans. If the opponent is insufficiently modeled,
playing rminimax risks the least.
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3 Conclusions

Over the last 40 years, researchers, aware of the fundamental deficiencies of the traditional alpha-beta
algorithm, have been proposing fixes and new methods to overcome those difficulties. Did they result in
practical alternatives to alpha-beta in computer chess? No.

Despite the multitude of papers concerned with the problems stated at the beginning, only few of the
proposals have been implemented in a competitive program for an interesting game. Of all the presented
approaches, B* is the one coming closest to being a complete and competitive solution for chess. Conspiracy
numbers are used as well, but only in few programs. Singular extensions are used, but their value was
reported to be less than initially thought. Outside computer chess, in the domain of two-player, zero-sum,
perfect-information games, BP was shown to outperform alpha-beta in Othello, with both programs lacking
a transposition table. Bridge, as a representative of imperfect-information games, is an example for success
with Partition Search.

Many of the here examined approaches are related. For example, ideas formulated in MGSS*, PB* and
Min /Max approximation can be found in later proposals such as EPS and BP!2. It is unclear how successful
those alternatives to alpha-beta will be in the future, because many problems remain to be solved.

Some methods try to backup more information than a single scalar value. This can quickly lead to high
memory and computing resource demands, as in Conspiracy Numbers and PB*. The problem here is to
find the right amount of information, such that gathering and processing it constitutes no problem and the
search still gets enough information.

Many of the approaches try to find a better way of selecting the next node(s) to expand, hoping to use
their computational effort in a more reasonable way. Those approaches are often faced with the Insurance
problem, because they are too focussed on selected parts of the tree, as in Min/ Max approximation, MGSS*,
Best-First Minimax and B*, PB* to some extent. This is the old forward-pruning problem in a new disguise.

Other methods need much more domain-dependent knowledge, such as utilities, probabilities or costs, to
solve problems like Stopping or which node to Expand Next. The already rather hard procedure of gathering
knowledge will become more difficult using those new methods. Additionally, probability functions estimating
how a value will change if a node is further expanded, depend on the evaluation function, search extensions
andrules governing the quiescence search. If only one of the three is changed, it is likely that the probabilities
change as well.

For the reasons given in section 1.2, alpha-beta isa very efficient and successful search algorithm. When
new methods and/or algorithms are proposed, they are compared against alpha-beta, an algorithm that
has been refined and enhanced over the last 40 years. One should not expect new methods to immediately
surpass alpha-beta performance wise, especially in domains such as chess, where alpha-beta is very well
established. Furthermore, researchers proposing a certain idea are possibly not familiar enough with all
the enhancements of alpha-beta to be able to use them to the benefit of their new algorithms. This paper
attempts to communicate these ideas.

4 Taxonomy

The two tables at the end summarize the methods of section 2. The entries in Table 1 give a short description
of 4 1important characteristics of search algorithms. The row for alpha-beta serves as a starting point. Missing
entries stand for “no issue”.

The second table describes how each method deals with the problems stated in the introduction and
contains two additional columns: one for the amount of work at leaf nodes and the other for how many
cutoffs in the tree are possible. The table reflects the author’s opinion, some of the entries are without
doubt arguable. However, more important than the individual entries i1s the trend, i.e. small differences
between algorithms, many “+” or “”. Some methods should work better than alpha-beta, even better than
alpha-beta with enhancements, only judged by the entries in the table. Commonsense and this observation
lead to the conclusion that some of the identified problems have much greater impact on the performance of
an algorithm than others.

[T

128ee [BS97] for a short description of the relationship of those algorithms.
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