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ABSTRACT

Due to transpositions a search tree can be considered as a search
graph. The transpositions are stored with information about pre-
vious searches in a transposition table. Although the use of trans-
position tables is standard practice, it is still an open question how
large the overall reduction is and especially which information has
the largest impact on the reduction.

The paper describes an experiment to distinguish between the re-
duction given the best moveis stored or the value of the best move is
stored. A second experiment compares storing the bound values for
minimal-window search with storing the true values. It transpires
that the highest reduction comes from re-using bounds because they
adequately generate cutoffs.

Since we know that from a certain transposition-table size not much

s to be gamned from doubling the number of entries, it might be
useful to store additional information to see whether this leads to a

better result. Our first experiments on the use of more information
per entry versus more entries indicate that additional memory can
better be used for storing additional information than for doubling
the size of the transposition table.

1 Two Problem Statements

When searching for a move chess programs build large search {rees. Since a
position sometimes can be arrived at by several distinct move sequences the size
of the search tree can be reduced considerably if previous results for a position
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already encountered are still available. The information can be stored in alarge
direct-access table, called the transposition table (Greenblatt et al., 1967; Slate
and Atkin, 1977). A closer inspection shows that the search tree now can be
considered as a search graph, due to the transpositions.

In the ideal case one would like to preserve every position encountered, together
with its relevant information. However, the memory required exceeds by large
the available capacity of present-day computers. Therefore, a transposition
table is im plemented as a finite hash table (Knuth, 1973). A position is converted
into a number of potentially sufficiently large size (the hash value) by using some
hashing method. The position is then mapped onto an entry in the transposition
table by using part of the hash value as an index in the table (the hash indez).
The most popular hashing method used by chess programmers is described by
Zobrist (1970).

When using iterative deepening and minimal window search, transposition ta-
bles may significantly reduce the search effort (Ebeling, 1986; Berliner and Ebel-
ing, 1989; Schaeffer, 1989; Hyatt et al., 1990), especially in endgame positions
with only a few pieces on the board. Still, it is an open question how large the
overall reduction is and especially which information has the largest impact on
the reduction. In this paper we quantify the merit of the different transposition-
table components. Moreover, we address the general question how we can profit
most efficiently from additional memory: by enlarging the transposition table
or by adding additional information?

In Section 2 the traditional components of a transposition-table entry are listed
and a series of experiments for quantifying their respective merits is given. The
experiments are described in Section 3. Section 4 contains additional com-
ponents for a transposition table. In Section 5 the results of a second set of
experiments are given. Preliminary conclusions are provided in Section 6.

2 Traditional Components

For an entry in a transposition table to be effective, it should at least contain
the following information (Marsland, 1986; Hyatt et al., 1990):

key %: contains the more significant bits of the hash value, viz. the complement
of the bits used for the hash index. The key distinguishes among different
board positions having the same hash index.

2Marsland (1986) uses the term Tock’.
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move : contains the best move in the position, which either caused a cutoff, or
obtained the highest score. The move is used for move ordering.

score : contains the value of the best move in the position. Since we adhere
to a-3 search, the score can be a true value, an upper bound or a lower
bound. The score is used to adjust the « and 3 bounds of the search.

flag : contains information on the score. The flag indicates whether the score
is a true value, an upper bound or a lower bound.

searchDepth : contains the relative depth in the subtree searched. When
doing an n-ply search and a position is stored at ply m of the tree, the
search depth is n — m. The searchDepth indicates how deep a previously
encountered position has been investigated.

We call a transposition table with these five information fields a traditional
table. Durning the search, each position is looked up in the table. If the position
is found the information serves one of three purposes, depending on the contents
of flag and searchDepth.

1. The depth still to be searched is less than or equal to the depth retrieved
from the table and the retrieved score is a true value. No further search
has to be done: the search value is retrieved from the table.®> Usually, the
best move is also retrieved from the table, and used for determining the
principal variation.

2. The depth still to be searched is less than or equal to the depth retrieved
from the table and the retrieved score is not a true value. In this case
the score can be used to adjust either the « value (if the score is a lower
bound) or the 3 value (if the score is an upper bound). If this causes « to
be greater than or equal to 3, then a cutoff occurs and no search has to
be done. Otherwise, the retrieved move can be used as a first candidate,
since it was considered best (or at least good enough to yield a cutoff)
previously.

3. The depth still to be searched is greater than the depth retrieved from the
table. In this case only the retrieved move is used*. It can be investigated
first, since it was considered best for a shallow search, the probability
being high that it also will be best for deeper searches. Thus the move is
used to improve move ordering.

3If the depth still to be searched is less than the depth retrieved, the search results may
differ from the results when searching without a transposition table.

4Programs using aspiration search also use the score. It is used for setting the search
window (Brudno, 196 3; Berliner, 1974; Gillogly, 1978).
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In summary, a transposition table is used for two purposes: (1) the retrieved
move is used for move ordering, and (2) the retrieved score is used for estab-
lishing the value of the position. In the last case the score is either a true value,
and the position does not have to be researched, or a bound value, in which
case either the « value or the 3 value is adjusted.

For investigating the merits of move vs. value of move we have performed six
experimental searches.

1. Search without a transposition table.
2. Search with a traditional transposition table, without score.
3. Search with a traditional transposition table, without move.

4. Search with a traditional transposition table, without move, only using
the score information if the score is a true value.

5. Search with a traditional transposition table, without move, only using
the score information if the score is a bound value.

6. Search with a traditional transposition table, with score, using the score
mformation both if the score is a true value or a bound value, and
move.

The experiments 1 and 6 are performed for completeness’ sake.

3 Experiments with a traditional table

The test set used for the experiments consists of 18 consecutive WTM (White-
to-move) positions taken from a middle game and 21 consecutive WTM posi-
tions taken from an endgame (see Appendix). Both games are played by human
experts. The 18 middle-game positions have been searched for 7 ply, the 21
endgame positions for 10 ply. The replacement scheme used for all experiments
is TwoBiG1, the scheme which performs best (Breuker et al, 1994). The
scheme is implemented as a two-level table, potentially storing two positions
per entry. Upon a collision the newest position is always stored, overwriting the
less important one of the previous two positions (in terms of number of nodes
searched). All experiments have been performed with a series of transposition
tables, ranging from 8K entries to 256K entries. The search algorithm used is
minimal window, iterative-deepening «-( search. As the measure for quanti
fying search effort we use the number of all nodes investigated, ie., summing
up interior nodes and leaf nodes. The number of nodes in the Figures 1 and 2
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Figure 1: The use of a transposition table in the middle game; 7-ply searches.

Figure 1 clearly shows that the use of a transposition table (experiment 6) is
profitable in terms of number of nodes searched compared to searching without
atransposition table (experiment 1). Further, the use of the score ofa transpo-
sition (experiment 3) is more profitable than the use of the move (experiment
2). This is due to the fact that whenever one of the bounds of the minimal win-
dow is updated, its lower bound will be greater than its upper bound, thereby
causing a cutoff. It appears that whenever a position is found in the trans-
position table, the retrieved score causes a cutoff in about 50% of the cases.
However, this effect stems fully from bound values (experiment 5). True values
(experiment 4) hardly have any effect in this respect, or, even worse, have a
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Figure 2: The use of a transposition table in the endgame; 10-ply searches.

The results of the experiments on the endgame positions are analogous to the
results of the experiments on the middle-game positions, but are more pro-
nounced as can be seen in Figure 2. Moreover, the use of a transposition table
is more profitable in endgames than in middle games. Further, with the largest
transposition table used (256K entries) in middle games using only the move
from the table results in about a 33% node decrease, whereas in the endgame
the decrease is about 66%. If in addition the score from the table is used, a
total decrease of about 60% in the middle game and about 90% in the endgame
is obtained.

The experiments reported in this section re-establish the benefit of using trans-
position tables, especially in endgame positions. The largest profit stems from
storing bound values.
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4 Additional Components

In our search for storing additional information in a transposition-table entry
we have found several suggestions, among others made by Schaeffer (1994) and
Stanback (1994). From their suggestions, we mention five additional compo-
nents:

date : contains theroot’s ply number in the game when the position was stored.
Sometimes only a 1-bit date flag is used, stating if the position is from an
‘0ld’ search or not. The date is used for time-stamping (Breuker et al.,
1994). A position will be overwritten by a position with a newer date.

depth : contains the number of ply scen from the root. A position is more
mportant if it is nearer to the root, since it has a higher probability of
being re-searched; possible savings are most likely larger than savings for
positions deeper in the tree.

extension : contains a boolean value, denoting if a search extension was done
at this position. The extension criteria at a node may vary (e.g., because
the extension is dependent on the a-3 window), resulting in an extension
one time and not in an extension the other time. The boolean extension
helps to overcome this problem (which is especially important when doing
a re-search).

principal : contains a boolean value, denoting if this position is part of the
principal variation of a child of the root®. Positions which are part of the
principal variation of a root’s child are important positions, and may not
be overwritten by other positions.

draw : contains a boolean value, denoting if the backed-up score of the position
is aproven draw. This is useful when you want to distinguish between vari-
ations resulting in positions which are real draws, and variations resulting
in balanced positions (which obtain a draw score).

Presumably this additional information will have an impact on the number of
nodes searched. However, only very few resecarchers have published even prelim-
inary results about experiments on these additional components. Breuker et al
(1994) mention an experiment testing the use of a 1-bit date flag, concluding that
“time stamping seems to have a slight edge”. In general it seems that adding
these new components to an entry is not very profitable (Schaeffer, 1996).

Storing the additional information described above does not take up much mem-
ory. Most fields need one bit of storage only, since they are booleans. The choice

5Note that this is a way to implement the refutation table using the transposition table.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.ntml



for small additional components is made on purpose, since a larger entry results
in a transposition table with fewer entries (assuming the same amount of mem-
ory is available). However, Breuker et al. (1994) showed that from a certain
transposition-table size not much is to be gained from doubling the number of
entries. Moreover, if the available memory is less than the memory needed for
doubling the number of entries, it still can be used for storing more information
in an entry.

The above considerations lead to the question how to use additional fields, taking
up more memory than only one bit. Instead of storing the best move (which
can be seen as a 1-ply principal variation) in a transposition-table entry, it may
be interesting to investigate the effects of storing a deeper principal variation
in an entry. This principal variation (PV) can be used to guide the search. If
a position is not present in the transposition table, a good move may stil be
available from the n-ply PV information of an ancestor position. In the next
section preliminary experiments are given investigating the effects of storing an
n-ply PV in a transposition-table entry.

5 Experiments with Storing the PV

The conditions for the experiments are equal to the conditions mentioned in
Section 3. As a measure for quantifying search effort we use the number of all
nodes investigated, i.e., summing up interior nodes and leaf nodes. Again, the
number of nodes in the Figures 3 and 4 are the cumulative results of all 18 and
21 positions, respectively. We have tested the results of storing an n-ply PV (n
= 2..5)in an entry versus storing only the best move (a 1-ply PV).

5.1 Middle-Game Experiments

In Figure 3 the results of the PV experiments on middle-game positions are
depicted. The number of nodes investigated are shown as a function of the
transposition-table size.

Our first observation is that storing n-ply variations seems hardly worthwhile:
the effects are small and severely dependent on the size of the transposition
table®. The explanation for this is that for less than 0.1% of the nodes inves-
tigated a position appears to be absent in the transposition table, whereas a
PV from an ancestor still is available. To give at least some quantification, it
can be seen that with the largest transposition table (256 K entries), storing a

8Note the small vertical scale.
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Figure 3: Storing an n-ply variation in the middle game; 7-ply searches.

5-ply vamation instead of a 1-ply variation wins roughly 3%, only marginally
outperforming the 1% gain by simply doubling the table size to 512K entries
(Breuker et al., 1994).

5.2 Endgame Experiments

The results of the experiments on the endgame positions are analogous to the
results of the experiments on the middle-game positions, as can be seen in
Figure 4. Here again, for the largest transposition-table size, the 5-ply variation
outperforms the 1-ply variation, but this time by some 12%.

6 Conclusions

We have described two series of expenments on the use of a transposition ta-
ble. First, it is examined which information is more important to store in a
transposition-table entry: the best move in a position, or the score of that
move. It follows that storing the score of a position is more profitable than
storng the best move. This result holds for middle-game positions as well as for
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Figure 4: Storing an n-ply variation in the endgame; 10-ply searches.

endgame positions. Second, it was found that for minimal-window search bound
values had a much larger effect than true values. This effect, although nowadays
expected, contrasts the idea from which the transposition tables originally were
devised, Le., avoiding the re-search of positions searched fully before.

Furthermore, we have tested the effect of storing an n-ply PV (n = 2..5) in
an entry, instead of only the best move (a 1-ply PV). Preliminary results show
that a 5-ply variation may win roughly 3% for the middle game, to 12% for the
endgame, though more experiments will be needed to validate this result.

Based on the above experiments, for future research it is recommended to con-
centrate on storing additional information which affects the number of cutoffs
generated by bound values.
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Appendix: The Test Positions

The middle-game experiments use the 18 WTM positions from move 15 onwards

of:

Kasparov—Short, Amsterdam (round 2) 1994

1. e4 €6 2. d4 d5 3. {\e3 N6 4. eb ONEAT 5. f4 ¢h5 6. INf3 Heb6 7. Le3 cxdd
8. {Nxd4 4cb5 9. Wd2 0-0 10. 0-0-0 a6 11. hd {\xd4 12. £xd4 b5 13. Eh3
b4 14. a4 4xd4 15. Wxd4 £6 16. Wxb4 fxeb 17. Wd6 W6 18. f5 Whe+ 19.
Fobl Exf520. Ef3 Exf3 21. gxf3 Wif6 22. &h3 bf7 23. c4 dxcd 24. {3
WeT 25. We6 Eb8 26. Hed H\b6 27. Hght g8 28. Wed g6 29. Wxe5 Hb7
30. £d6 ¢c3 31. & xe6+ L xeb 32. Exeb 1-0

Position after 14..Bxd4

The endgame experiments use the 21 WTM positions from move 34 onwards

of:

Rabinovich-Romanovsky, Leningrad championship 1934

1. c4 &6 2. HNc3c6 3. dd db 4. Nf3 Hed 5. e3 e6 6. £d3 5 7. We2 £n\dT 8.
b3 &b4 9. &b2 Wab 10. Ecl 0-0 11. 0-0 Ad6 12. HNe2 Wid8 13. HNeb ¥h4
14. £3 {Nech 15. g3 Whe 16. &4 H\xd3 17. Hexdd gb 18. g2 N f6 19. Hcel
g4 20. fxgd HHxgd 21. Hgfd N6 22. He2 BT 23. b4 Hed 24. H\ch EbS 25.
a3 b6 26. {\xed fxed 27. Hef2 4d7 28. ¢b & xf429. Hxf4 Hxf4 30. Exf4 bb
31. W2 he8 32. Bf6 £g6 33. Wif4 Wxf4 34. Exf4 h5 35. h3 g7 36. £c3
&15 37. g4 hxgd 38. hxgd £g6 39. g2 Hh6 40. 6 Hed 41. Sel bgT 42.
Hfl Ha8 43. Hh3 a6 44. £g3 Th8 45. £h4 Hf8 46. Hxf8LHxf8 47. L gl eb
48. &xeb AT 49. bhd Foeb 50. ogh Se8 51. Fh6 &7 52. dog7 £e8 53. gh
&Hf5 54. Hf3 1-0

12

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.ntml



Position after 33..Qxf4
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