
Analysis of Transposition Tables
and Replacement Schemes

Sashi Lazar

Department of Computer Science and
Electrical Engineering

University of Maryland Baltimore County

E-Mail: slazar1@cs.umbc.edu
WWW: http://www.cs.umbc.edu/~slazar1

December 29, 1995

Abstract. A set of experiments were designed to measure the enhancement to alpha-
beta search using refutation and transposition tables. Results indicate that the use of
transposition tables can reduce the size of the game tree by as much as 95%,
significantly improving the algorithmic performance of αβ search. Seven replacement
schemes to handle collisions in transposition tables were proposed and their
performance measured. Based on the results of the experiment it can be concluded that
for large-sized tables all schemes perform nearly identically. Because of the probability
of the collisions is inversely proportional to the size of the table, for smaller sizes two
level replacement schemes outperformed the single-level implementations.

Key Terms: computer chess, transposition tables, collisions, replacement schemes,
alpha-beta search, refutation tables

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

2

I. Introduction

The game of chess is one of the most intellectually challenging games man has invented and played over

hundreds of years. The complexity of chess has sparked over 200 hundred years of intensive analysis,

still failing to exhaust the possibilities of the billions of game positions and strategies. To measure the

complexity of the game, researchers have estimated over 10100 board configurations [1]. (In light of the

fact that there are 1088 particles in the known universe, this would qualify the game of chess practically

inexhaustible.)

Since the birth of the electronic computer, researchers in artificial intelligence have devoted their

timeless efforts to build chess programs capable of defeating the human player. While man and machine

compete on comparable levels, their identical performance hardly reflects the way such performance is

achieved. Human players are frequently unable to assign numeric scores to various positions, their

strength lies in the ability to choose the preferable line of play based on accumulated knowledge[2]. As a

result of hundreds of years of research there are libraries of collection of games and positions. Despite

the amount of knowledge available from these collections, very little chess knowledge is found in modern

computer chess algorithms[3]. Instead, game playing algorithms build and analyze game trees by brut-

force search.

Early research has found that while constructing the game tree by generating moves and board positions,

a large percent of the configurations resulting from different sequences of moves were identical. It

seemed obvious that the evaluation or further expansion of such positions would have resulted in

duplicate work. To avoid such repetitions modern computer chess programs use a transposition table,

usually implemented as a simple hash table with a fixed size to store the values of positions already

encountered during the search. Although this method seems promising, problems may arise when two

positions hash into the same slot. To handle such collisions, seven different replacement schemes were

proposed by Breuker [4].

In this project, I have modified the chess program AliBaba, written by Dennis Breuker, to measure the

true performance of the replacement algorithms. Section 2 briefly discusses the most basic chess

algorithms and describes how these components were implemented in the original version of AliBaba.

The next section describes the modified version of the software, which includes a sophisticated scripting

language to maximize user interaction and performance measurement. The seven replacement schemes

used in transposition tables, as proposed by Breuker, are explained in detail in section 4. Section 5 is a

short tutorial of the experiment design. The results of this project are reported and analyzed in the final

section.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

3

II. Chess Algorithms and AliBaba

Chess programs analyze the game by building trees. The nodes of the tree are the board configurations

and the values associated with them, assigned by the computer. In such game trees, we distinguish leaf

nodes from internal nodes. Leaf nodes are found at the bottom of the search tree and are not subject to

further expansion. All other nodes in the tree are considered internal nodes. A move generation

algorithm produces all the possible moves for all the internal nodes in the tree. Most programs use a

variation of αβ search, because it tends to eliminate a considerable size of the tree. This is based on the

principle that some parts of the subtree can never be part of any chosen strategy since the opponent will

most likely move to avoid this line of play [1].

The goal of any search algorithm is to reduce the tree size as much as possible. Although many small

enhancements to the regular αβ search are used in modern chess programs, the size of the game tree

remains exponential. This size is based on the branching factor, which for practical purposes averages

around 36, and the depth to which the search is performed. Because of the memory limitations of

modern computers this depth ranges from 10 to 30. It has been observed that the size of the αβ game tree

greatly depends on the order in which the moves are selected for expansion [5]. Under perfect move

ordering, which is a possible but impractical method, one can construct a minimal αβ tree, in which the

branch leading to the best positional score is selected first.

AliBaba implements αβ search with several small enhancements. To obtain a “best guess” on the move

ordering, iterative deepening is used as suggested by Scott in 1969. The results of the previous search are

used to order the moves for the next iteration. Another enhancement used is called the minimal window.

This is based on the observation that it is relatively easy and inexpensive to prove that a move is worse

that the best move found so far [4].

During the search, only the leaf nodes are subject to static evaluation. A simple evaluation function is

applied to all the positions located at the bottom of the search tree. AliBaba uses a very simple method

of assigning numeric scores to various board configurations. The overall score of a position consists of a

material sub-score and a positional value. The following algorithm describes the evaluation function

used in this experiment:

Funct i on Eval uat e As I nt eger

I f UseTr ansPosi t i onTabl e = TRUE
 val ue = Get MoveFr omTr ansTabl e

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

4

i f NoMoves
 i f I n- Check
 r et ur n MATE
 el se
 r et ur n DRAW
val ue = mat er i al [t oMove] +posi t i onal Val ue[t oMove] -
 mat er i al [! t oMove] - posi t i onal Val ue[! t oMove]
r et ur n val ue

The material and positional values for each side are filled in prior to the call to evaluate. The positional

values are derived from the mobility factor which is maintained for every piece on the board. Note, that

in the figure above, the function returns the relative score for the position since the opponent’s score is

subtracted from the position’s real score.

The reliability of the static evaluation function also depends on how quiescent the evaluated positions

were. Because many of the nodes subject to evaluation are not quiescent, to produce a reliable score

these positions are further extended. This is called the quiescence search. AliBaba only considers

positions in which the king safety is compromised or a piece can be captured. If a position obtained by

the quiescence search is found in the transposition table, its value may be used; quiescence positions are

however not written to the table.

AliBaba has a fairly simple move-ordering function. For every internal node (position) all legal moves

are generated. This does not include pseudo-legal moves such as allowing the king to stay in check. As

it was mentioned above, the ordering of the moves determines the size of search tree generated. To

minimize search space, AliBaba uses two common move-ordering heuristics.

• Refutation tables are used with iterative deepening, retaining one of the major disadvantages of

transposition tables: their size limitations. For every iteration of the search, the principle variation is

stored in the refutation table. The paths stored from the d-1 ply serves as basis to search to depth d

[5].

• According to Schaeffer, history heuristics maintain information on whether there is a correlation

between a move and any success that the move has achieving a goal. In [4] he defines a sufficient

move to be a move that either causes a cutoff in the αβ search or yields the best minimax score.

When a sufficient move is encountered, its history score is increased. Hence moves that are

considered to be good get higher scores. In the interior of the search tree, the moves are then sorted

based on their history scores. The position with the highest score is picked for expansion first [4].

Because it is possible to reach the same position by more than one path, if a full search tree would be

constructed, its interior nodes would be duplicated. Transposition tables use this observation by storing

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

5

information about each position (value, depth, size of subtree) in case an identical positions is

encountered. If a position is found in the transposition table and its value is found reliable, it is retrieved

from the table and used for further search[5]. Under ideal circumstances all positions and relevant

information could be stored in the table, which, given the memory and storage limitations of available

computers, is impossible.

AliBaba implements its transposition table as a fixed sized hash table, with continuos memory allocation.

Every object (position) is assigned a hash value by a simple hash function. The transposition table is

capable of storing 2n entries. The n low-order bits of the hash value are used to define the hash index,

while the remaining bits are used to distinguish between several positions that might be mapped on the

same hash index by the hash function [4]. Although some implementations of transposition tables

include an overflow area[6], AliBaba does not come with such an enhancement.

According to Marsland and Hyatt, an entry in the transposition table should contain the following

information:

• Key. The bits of the hash value are more significant that those of the hash index. The key is needed

to distinguish among the different board positions having the same hash index.

• The best move in the position. This is the (sufficient) move which either caused a cutoff, or obtained

a highest score.

• The score of the best move in the position. This score can be a true αβ value or an upper or lower

bound. The table should also contain a flag, which indicates the type of the score.

• The depth of the subtree searched. In AliBaba this number is the relative depth, that is, if

conducting an m-ply deep search where the position is found at depth n, the relative position m-n is

to be stored in the table [4].

It is possible that two different board positions have the same hash index, and hence map into the same

entry in the table. When such collisions occur, the choice has to be made which position to keep or evict

from the table. In this project we will examine seven different replacement schemes. It should be noted

here that by increasing the number of bits in the table hash index, the probability of the collisions can be

significantly lowered. This option is impractical in our case given the memory limitation of available

computer equipment.

III. Enhancements to AliBaba

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

6

Although AliBaba’s search engine was very well written, its interface proved to be inadequate for our

experimental purposes. To maximize measurability, I needed a more sophisticated user interface that

allowed maximum flexibility. Before the design of the experiment, I decided to rewrite AliBaba’s main

user interface and add a statistical engine with upgraded display capabilities. As a result of this upgrade

AliBaba+ was born.

The complicated command line parameters that the program was originally based on were replaced by

interactive user commands. The new user interface, based on a full lexical analyzer and a LR(1) parser,

quickly transformed a little command line utility into a user friendly application. Appendix A describes

the full syntax AliBaba+ uses. Please note, that for backwards compatibility, all the original command

line support was preserved.

With this new user interface, based on AliBaba+’s own script language, run-time parameters such as

transposition table scheme, or index sizes can be changed and their effects can be measured immediately.

The table below describes the function of the SET command, which allows the user to change search

parameters from the command line:

The SET Ut i l i t y

Usage: SET <opt i on> = <val ue>

CENTER = <st r i ng>| DEFAULT Set s cent er cont r ol f unct i on
Pi ece = <val ue> Set s r el at i ve pi ece val ues
VALUES = DEFAULT Reset s r el at i ve pi ece val ues
COLOR = <col or > Set s pl ayer t o move
CONFI RM = <on| of f > I f ' conf i r m' i s of f , t he pr ogr am wi l l
 per f or m any command wi t hout user
 i nt er act i on.
DEPTH = <val ue> Set s def aul t dept h used by STEP
NODES = <count > Set s max nodes t o be exami ned
STATS = <on| of f > Toggl es st at i st i cal i nf o di spl ay
TABLE = <on| of f > Toggl es use of t r anspos t abl e
REFS = <on| of f > Toggl es use of r ef ut at i on t abl e
DEBUGLEVEL = <val ues. . . > Tur ns on and of f var i ous debug opt i ons.
 These opt i ons can be combi ned by
 t he | oper at or .
TABLE PLY = <pl y> TTabl e keeps " pl y ' i nf o
TABLE LEVEL = <1| 2> Set s t abl e sear ch l evel
TABLE SCHEME = <scheme> Speci f i es r epl acement scheme
TABLE I NDEX = <val > Set s t he #of bi t s per i t em
TBALE MOVES = <on| of f > I f ON moves ar e r ead f or m t abl e
TABLE VALUES = <on| of f > I f ON val ues r ead f r om t abl e
TABLE STAMP = <on| of f > Use t i mest amp i n t abl e
TABLE FLAG = <on| of f > Mar k ' ol d' ent r i es
TABLE DEBUGDEPTH = <val ue> * * I nt er nal Use * *

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

7

The following section describes some of the most important options of the SET command. The options

for the SET command can be broken up into two categories. The first category controls the general

behavior of the applications, turns on or off various search parameters and specifies statistical recording

and displaying methods. The second category controls the behavior of the transposition table, such as the

replacement scheme and the hash index size.

• Since I wanted to run this experiment with and without transposition tables, I needed a way to turn

the table on or off at run-time. The SET TABLE command serves this purpose. It can also be used

to activate the use of the refutation table by typing SET REFS = <on|off>.

• As it was discussed earlier, increasing the number of bits used in the hash index can significantly

lower the probability of a collision. For this purpose I included the SET TABLE INDEX command

which sets the number of bits in the hash index. The default value is 18 and most of the experiment

was performed with this default value.

• The SET CENTER option controls the function used when evaluating center control, which is part of

the positional evaluation. Currently three functions are supported: LINEAR, EXPO, and DEFAULT.

The first sets the center control table to a linear distribution, while the second type uses an

exponential score, that is, pieces closer to the center are scored significantly higher than pieces far

from the center. The default function distributes the scores evenly.

• For further experiments I implemented a command that allows the user to set the relative values of

the pieces on the board. By using the SET <piece> = <value> command one can assign any material

value to any piece and observe how the evaluation function changes. The default values (pawn=100,

knight=325, bishop=325, rook=500, queen=900, king=1500) can be restored by the SET VALUES =

DEFAULT command.

• The DEPTH option determines the maximum depth AliBaba+ will search to. This limitation does

not include the depths reachable by the quiescence search.

• To control the maximum number of nodes that αβ will expand, use the SET NODES command.

This option proved to be useful when forcing a deeper search, but one has to be aware of the limit of

the available memory.

• To set the replacement scheme used by the transposition table, I included the SET TABLE SCHEME

command. It accepts one of the following strings: new, old, deep, big1, bigAll. Please note that

AliBaba+ is case sensitive; therefore the scheme names must match these cases.

• With the deep and big1 methods the user may activate a two level transposition table scheme by

using the SET TABLE LEVEL command.

• Normally, after a move is made (the tree has been fully searched), positions in the transposition

table are cleared for the next search. Positions and their values can be preserved for the next

iteration by using the time-stamp method. If position time stamping is active, older table entries are

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

8

marked, and while their values can be used at the next iteration, in the case of a collision, these

positions are evicted regardless of the replacement scheme in effect.

While designing the experiment, I realized that some of these tests will take several minutes, especially

searches to 8 or 10 ply without transposition tables. Typing commands and waiting for the results was

just not good enough. AliBaba+ therefore features a recursive script running capability, that is, scripts

can be run from the command line, and those scripts can run other scripts and so on. This way I was able

to design a few scripts most common to all the experiments. The only thing left to do was set some

variables, run one script, then change the settings and run the same script under different scenarios. For a

complete description of the experiment, see section 5.

IV Collisions and Replacement Schemes

As discussed earlier, more than one positions may have the same hash key, causing them to be hashed

into the same positions in the transposition table. This is commonly known as a collision[4]. When such

collisions occur, a decision has to be made about which of the two positions should be preserved in the

table. Such a decision is determined by the replacement scheme used in the transposition table. This

section describes seven methods of handling collisions as they were proposed by Breuker and

implemented in AliBaba+.

1. The most frequently used method is called deep. It has been the traditional way to handle collisions

in transposition tables in most chess algorithms. When a collision occurs, the node with the deepest

subtree searched is preserved in the table. The reasoning behind this method is that a subtree

searched to a greater depth usually yields more information and a larger number of nodes than the

shallower ones. And since presumably more time was spent searching the deeper subtree, storing

this position in the table can save more work.

2. A fairly common and very simple replacement scheme is called new. In this method the newer

position is kept whenever a collision occurs. This concept is based on the observation that most

transpositions occur locally, within small subtrees of the full αβ search tree [4].

3. Another replacement method is called old. With this scheme, when collision occur, the older

positions are preserved in the table. Since this scheme was implemented in the original version of

AliBaba, it was included in the experiment for the sake of completeness.

4. If the search tree contains a large number of forcing moves or subtrees extended by the quiescence

search, the depth of the search tree can no longer serve as a reliable indicator to the amount of work

performed. Instead of selecting the deepest subtree, one may wish to select based on the actual

number of nodes contained in the subtree. The disadvantages of storing the actual number of nodes

searched under a certain subtree is obvious: this method requires extra amount of storage in the

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

9

transposition table. One scheme that counts a position in the transposition table as a single nodes is

called big1.

5. Another variation of replacement schemes that considers the number of nodes searched in the sub-

tree is bigAll. This method however counts a position in the transposition table as N, where N is the

number of nodes searched to obtain the score for the particular position.

6. Ebeling in 1986 introduced the use of a two-level transposition table. Two level replacement

schemes have two table positions per entry, requiring a bit more space [4]. The following algorithm

describes the replacement scheme referred to as twoDeep:

Pr ocedur e TwoDeep_Repl ace

I f New. dept h >= f i r st . dept h Then
 second = f i r st
 f i r st = new
el se
 second = new

7. The final scheme is called twoBig. It is also a two level implementation of the transposition table

and it can be view as a combination of new and big1. The replacement algorithm is very similar to

the one described above: If the number of nodes searched of the new position is greater than or

equal to the first level’s number, the first level is shifted down and the new position is stored on the

first level. Otherwise, the new position is stored on the second level.

V. The Experiment

The first part of this project was to develop an easy-to-use multi-purpose interface to AliBaba, and the

second was to put it to work. This experiment focused on two questions:

1. How much savings do transposition tables and refutation tables offer in αβ search in the game of

chess, and

2. How well do the seven replacement schemes perform under different conditions.

The first part of the experiment was designed to answer the former question. Intuition dictated that we

should see a significant improvement by adding refutation tables and later transposition tables to regular

αβ search. The experiment was to collect reliable data to support this intuition. A collection of games

was obtained from various Internet sites, including the 1981 Russian championship games, several which

had been played by Kasparov vs. Timosjenko in 1981:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

10

The test programs were designed to run on three different stages of the game: beginning, middle, and

end-games. The beginning games were not hard to obtain. I have analyzed some of the opening books

used in Crafty, a chess program written by Hyatt, to produce the positions. The following diagram is, for

example, from Ostrich vs. Merlin in move 52, white to move:

I have also tested the program on several classic end games, such as a rook against a knight, two rooks

against a queen, two bishops against a rook, etc.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

11

With a collection of over twenty games, several scripts were executed on each board configuration.

Every position was subjected to a basic αβ search with and without refutation and transposition tables to

different search depths. The depth of the search varied from 3 to sometimes 12. AliBaba+ recorded the

number of nodes generated and time it required to produce a move.

The second and more important part of the experiment was designed to produce data that would give us

some measurable insights on how well the different replacement schemes handle collisions. To measure

their performance, the same collection of games were used. I should note here that although

transposition tables are hardly ever used in the first few steps of the game (modern programs use opening

books instead), for the sake of completeness all tests were performed on opening positions as well.

To ensure the validity of the data, all tests were run under nearly identical circumstances on a Silicon

Graphics Indy 100Mhz workstation running UNIX. To measure true performance, all seven replacement

schemes were subjected to the same test. This included running several αβ searches to different depths

and recording the time required for the program to run to completion, along with the number of nodes

examined per second. I also recorded a few more statistics which proved to be a good measure of

performance:

1. Total time required to complete the search in milli-seconds

2. The total number of nodes examined during the search

3. I have further broken down the node count to indicate the number of internal nodes,

4. the total number of leaf nodes to which the evaluation function was applied, and

5. the number of nodes extracted by the quiescence search.

6. The number of position filled in the transposition table

7. The load factor of the transposition table after each move

8. The number of reads from the transposition table

9. The total number of writes to the transposition table. This includes positions written during

collisions, and

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

12

10. the number of hits during the search.

11. The total number of moves generated during the αβ search and

12. the how many times was αβ called recursively.

The final step to complete the experiment was to create a uniform script file. Its purpose was to ensure

that all seven replacement schemes were to be tested under the same constrains and conditions, therefore

the same script was executed for all the algorithms. The basic structure of the script is described in the

figure below:

Cl ear Cur r ent St at i st i cs
Set Tabl e Scheme
Set Tabl e I ndexi ng Level
Set Sear ch Dept hs

Load Game1
Run Test
Load Game2
Run Test
…
Save St at i st i cs

This script was then executed for all seven replacement schemes and the information recorded by the

statistic engine was saved to a comma delimited text file for further processing. The next section

presents the data accumulated as the result of this experiment, and offers an explanatory discussion on the

performance analysis of the transposition table replacement algorithms.

VI. Results and Discussion

AliBaba+ displays both intermediate and final search results in a tabular format. In order to analyze its

performance, the user must become familiar with the display format used by the application. When the

PRINT BOARD command is issued, the following information is displayed on the terminal screen:

WTM> pr i nt boar d
WTM WS WL BS BL 7200+0 7200+0 (732abd88, db39bcaf)
 +- +
8 | : r : n : b: q : k: b : n: r |
7 | o : o: o : o: o : o: o : o: |
6 | : : : : : : : : : : : : |
5 | : : : : : : : : : : : : |
4 | : : : : : : : : : : : : |
3 | : : : : : : : : : : : : |
2 | : O: O : O: O : O: O : O: O |
1 | R : N: B : Q: K : B: N : R: |
 +- +
 A B C D E F G H

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

13

Besides the current position, AliBaba+ indicates the side to move in the upper left hand corner, followed

by the castling options. The example above shows that both white and black may short and long castle.

The following two numbers indicate the material and positional relative scores for both white and black

respectively.

When the STEP command is issued, AliBaba+ will search to a specified depth set by the SET DEPTH

option or supplied as an argument to the STEP command. The program displays intermediate results

after each iteration in the following format:

WTM> st ep 4
[0 posi t i ons r emai ni ng i n t r ansposi t i on t abl e]
 1 0. 19s - 3. 430 g3- g4 . Re8xe6 2
 0. 23s >> h2- h4 . Re8xe6 2
 0. 24s - 3. 270 h2- h4 . Re8xe6 2
 0. 25s >> c2- c4 . Re8xe6 2
 0. 25s - 2. 970 c2- c4 . Re8xe6 2
 0. 28s >> Ne6- g5 . Re8xe1 2
 0. 28s - 2. 690 Ne6- g5 . Re8xe1 2
 0. 30s >> Ne6- c5 . Kd7- c8 2
 0. 30s 0. 860 Ne6- c5 . Kd7- c8 2
====================[0. 35] ====================
 2 0. 36s 0. 860 Ne6- c5 Kd7- c8 2
====================[0. 45] ====================
 3 0. 57s << Ne6- c5 Kd7- c8 a2- a3 . Qb2xa3 4
 0. 87s - 0. 460 Ne6- c5 Kd7- c8 Nc5- e4 . Qb2xc2 4
====================[1. 60] ====================
 4 1. 94s - 0. 460 Ne6- c5 Kd7- c8 Nc5- e4 Qb2xc2 4
====================[4. 15] ====================
2573 nodes (i nt : 976, l eaf : 1597, qui es: 400) , 620 n/ s
486 f i l l ed (0. 74%) , 2586 r eads, 193 hi t s (7. 46%) 573 wr i t es
6 col l i s i ons, 1 expect ed
16170 moves i n 491 t i mes (32. 93)
My move: Ne6- c5

For each depth, the total time in seconds is displayed in the middle of the table and between the

iterations. When αβ finds a new upper bound, it displays the elapsed time along with the move currently

examined. Moves preceeded by a dot are results of the quiescence search. On the right hand side of the

table the maximum search depth is displayed. The << and >> indicates whether the search has failed low

or high respectively. At the bottom of the table the accumulated statistics are displayed.

The information collected from the result of the first part of our experiment supports the argument that

both refutation and transposition tables offer significant improvements to the regular αβ search by

providing a better move ordering mechanism and therefore reducing the number of positions to be search

by the program. The results of running a 3 through 6 ply search with and without refutation and

transpositions tables are represented in the chart below:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

14

Time
(sec)

Node
Count

Internal Leaf Quies

Regular αβ
1.5 1046 301 745 209

11.82 8548 3686 4862 3259
59.77 43328 18966 24362 14875

531.79 374527 197007 177520 158887
2804.42 2886728 1800864 1085864 409374

 Refutation
Table

1.8 1011 281 730 191
6.3 3735 1382 2353 1106

59.01 34634 15025 19609 11569
268.83 153780 73106 80674 44748
745.24 421701 227649 194052 198452

Transposition
Table

0.83 1011 281 730 191
2.71 3550 1283 2267 1026

18.21 23968 10067 13901 7676
53.61 71492 27038 44454 14881
88.56 114969 50372 64597 37429

The numbers in the chart presented above clearly indicate a significant improvement when the search

engine was enhanced with refutation and transposition tables. The following two graphs compare the

running time and the number of nodes examined during the three test phases:

Alpha-Beta Enhancements

0

500

1000

1500

2000

2500

3000

Ply 3 Ply 4 Ply 5 Ply 6 Ply 7

None

Refs

Transpos

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

15

Alpha-Beta Enhancements (Node Count)

0

500000

1000000

1500000

2000000

2500000

3000000

Ply 3 Ply 4 Ply 5 Ply 6 Ply 7

None

Refs

Transpos

The graphs above indicate that the most significant changes occur when the regular αβ search is

enhanced with the use of transposition tables. To explain these findings, I have analyzed the relative

number of nodes examined when transposition tables were used.

None Transpos Ratio
1046 1011 3.35%
8548 3550 58.47%

43328 23968 44.68%
374527 71492 80.91%

2886728 114969 96.02%

This data suggests that when searched deeper than 6 plies, over 80% of the positions were already in the

transposition table. In order to determine how close the generated tree was to the optimal minimum

game tree, one would have to first construct such a tree. Because this method proved to be impractical,

we can only make approximations. Schaeffer found that with the combination of transposition tables and

history heuristics, the tree size can be reduced by as much as 99%, and the trees generated during the

search are within a factor of 1.5 times that of the minimal game tree [5].

The second part of the project is unique. To the best of my knowledge no one has designed an extensive

experiment to measure the performance of replacement algorithms used in transposition tables. The

seven schemes tested were: deep, new, old, big1, bigAll, twoDeep, and twoBig1. The following table

shows the results of executing a 3 though 7 ply search on middle games using the different replacement

schemes. The values in the table indicate the extracted nodes per second.

Deep New Old Big1 BigAll TwoDeep TwoBig1
858 858 864 850 849 822 822
995 993 941 944 1004 988 917

1040 1104 1123 1099 1045 1044 1074
1170 1172 1170 1156 1162 1158 1142
1199 1186 1185 1196 1197 1199 1195
1211 1231 1198 1222 1209 1216 1222

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

16

800

850

900

950

1000

1050

1100

1150

1200

1250

Ply 3 Ply 4 Ply 5 Ply 6 Ply 7 Ply 8

Deep

New

Old

Big1

BigAll

Tw oDeep

Tw oBig1

Although at first look the graph indicates that almost all of the algorithms performed identically,

summing up the nodes examined per seconds over many games suggests that deep and two deep perform

slightly better than the other five. Data collected indicates however, that in middle games choosing, a

different replacement schemes to handle collisions in transposition tables is not likely to improve the

overall performance.

This can be explained by the size of the transposition table chosen. The test scripts were run on

transposition tables with 18 bit indexing, that is the number of entries in the table was 218. The following

table represents the load factor of the transposition tables on different plies:

Deep New Old
Ply 3 0.18 0.27 0.216
Ply 4 0.65 0.975 0.78
Ply 5 5.01 7.515 6.012
Ply 6 27.78 41.67 33.336
Ply 7 21.11 31.665 25.332
Ply 8 54.73 82.095 65.676

Because of the relatively low load factor of the transposition tables during the search, collisions occur

with a low probability, lowering the significance of the replacement algorithm used.

In order to determine which algorithm (if any) is the best, I changed the table hash index size from 14

bits to 20 bits. The reduction in the table size increases the probability of collisions, which should

magnify the individual performances of the seven replacement schemes. The graph below represents the

result of this experiment:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

17

2600

2650

2700

2750

2800

2850

2900

2950

3000

14 Bits 16 Bits 18 Bits 20 Bits

Tw oBig1

Tw oDeep

Big1

BigAll

Deep

New

Old

The data represented by the graph indicates that for smaller transposition tables, the two level

replacement schemes slightly outperform the single level implementations. This is an important result,

because this indicates that while representing positions in the transposition table using a two-level

method reduces the maximum number of entries in the table, this disadvantage appears to be negligible

on the performance of the algorithm.

VII. Conclusion

As a part of this project I developed an advanced version of the AliBaba chess program. Its enhanced

user interface allowed us to fine tune and measure several enhancements to the regular αβ search and to

measure the performance of the seven replacement algorithms used in transposition tables to handle

collisions.

Data collected from this experiment indicated that the use of refutation tables and especially transposition

tables can significantly reduce the size of the game tree searched by αβ. With the combination of these

two enhancements we were able to show a 95% reduction in search time and space.

Several test programs were constructed to measure the performance of the seven proposed replacement

schemes: deep, new, old, big1, bigAll, twoDeep, and twoBig. The results of this experiment indicated

that slight differences can be observed on smaller size transposition tables, but when the table hash index

exceeds 18 bits, differences in performances among the algorithms fade away. We have argued that

because the increasing size of the transposition tables reduce the probability of a collisions, the

algorithmic performances of different replacement schemes become identical. For small table sizes, the

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

18

experiment indicated that two level hash tables outperform the single level methods, dispite the reduction

in the maximum number of entries in the transposition table.

AliBaba+ was designed to allow the user to change the relative piece values as well as the function that

controls the center control evaluation methods. This is no accident, since for future work I plan to

explore how the relative piece values influence the computer’s evaluation and decision making.

VIII. Acknowledgments

I would like to thank Dr. Alan Sherman and Dr. Jim Mayfield at the University of Maryland for their

semester long support with this project. Special thanks to Dennis Breuker for the implementation of the

original AliBaba program, and to Dr. Jonathan Schaeffer at the University of Alberta for his support.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

19

IX References

1. Jonathan Schaeffer, Experiments in Search and Knowledge, Ph.D. thesis, Dept. of Computer

Science, University of Waterloo, 1986

2. Helmut Horacek, Reasoning with Uncertainty in Computer Chess, Artificial Intelligence 1990, pp.

37-56

3. D. Hartmann, Notions of Evaluation Functions Tested Against Grandmaster Games, Advances in

Computer Chess, Elsevier Science Publishers, 1989

4. Dennis m. Breuker, Replacement Schemes for Transposition Tables, 1993

5. Jonathan Schaeffer, The History Heuristics and Alpha-Beta Search Enhancements in Practice,

University of Alberta, 1989

6. Zobrist A.L. A new Hashing Method with Application for Game Playing. Technical report #88,

Computer Science Department, The University of Wisconsin, Madison, 1990

7. Marsland T.A, A Review of Game-Tree Pruning, ICCA Journal, Vol. 9, No. 1, pp. 3-19, 1986

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

20

Appendix A - AliBaba+ Command Reference

Li st of l egal commands.

 #def i ne " <const >" <val ue> MOVE <pos- pos>
 #undef " <const >" (see bel ow) NEW
 BACK <moves> PLACE <col or ><pi ece> ONTO <squar e>
 CLEAR <BOARD| TABLE> PRI NT . . . (see bel ow)
 DELETE <Pi ece> QUI T
 EVALUATE [Col or] RUN <scr i pt >
 ECHO [on| of f] SAVE . . . (see bel ow)
 FORWARD <moves> SET . . . (see bel ow)
 HELP SHOW <BOARD| MOVES> = <val ue>
 LOAD <f i l ename> STEP <dept h>

#def i ne and #undef
 These t wo keywor ds al l ow t he user t o def i ne syst em wi de const ant s
 and shor t cut s t o keywor ds. NOTE: The t ype of t he ' val ue' can be
 STRI NG I NT or BOOLEAN. Quot es ar ound t he st r i ngs ar e opt i onal .
 The PRI NT Command
 The pr i nt command di spl ays i nf or mat i on on sever al opt i onal t opi c
 on t he t er mi nal . Val i d t opi cs ar e: BOARD, MOVES, GAME, VALUES,
 TABLE, SETTI NGS, and VARS. I f t he PRI NT command i s i nvoked wi t h
 any ot her st r i ng, t he speci f i ed st r i ng wi l l be echoed.
 The SAVE Command
 The SAVE command al l ows t he user t o save t he boar d and game st at e
 t o an aux f i l e. The f or mat of t he f i l e mi ght be ASCI I or Lat ex.
 When ASCI I i s used, bot h t he boar d and t he game (wi t h i t s moves)
 ar e st or ed. The LATEX t ype onl y saves t he posi t i on. Wi t h t he
 save command i t i s al so possi bl e t o save t he cur r ent s t at i s t i cs.
 SAVE <f i l ename> AS <ASCI I | LATEX>
 SAVE STATS <f i l ename>
 The SET Ut i l i t y
 The SET command al l ow you t o set syst em var i abl es at r unt i me. Thi s
 gi ves a gr eat f l ex i bi l i t y t o measur e syst em per f or mance under
 di f f er ent set t i ngs.
 The SET command can t ake t he f ol l owi ng par amet er s:

 CENTER = <st r i ng>| DEFAULT Set s cent er cont r ol f unct i on
 Pi ece = <val ue> Set s r el at i ve pi ece val ues
 VALUES = DEFAULT Reset s r el at i ve pi ece val ues
 COLOR = <col or > Set s pl ayer t o move
 CONFI RM = <on| of f > I f ' conf i r m' i s of f , t he pr ogr am
 wi l l per f or m any command wi t hout
 user i nt er act i on.
 DEPTH = <val ue> Set s def aul t dept h used by STEP
 NODES = <count > Set s max nodes t o be exami ned
 STATS = <on| of f > Toggl es st at i s t i cal i nf o di spl ay
 TABLE = <on| of f > Toggl es use of t r anspos t abl e
 REFS = <on| of f > Toggl es use of r ef ut at i on t abl e
 DEBUGLEVEL = <val ues. . . > Tur ns on and of f var i ous debug
 opt i ons. These opt i ons can be
 combi ned by t he | oper at or .
 TABLE PLY = <pl y> TTabl e keeps " pl y ' i nf o
 TABLE LEVEL = <1| 2> Set s t abl e sear ch l evel
 TABLE SCHEME = <scheme> Speci f i es r epl acement scheme
 TABLE I NDEX = <val > Set s t he #of bi t s per i t em
 TBALE MOVES = <on| of f > I f ON moves ar e r ead f or m t abl e
 TABLE VALUES = <on| of f > I f ON val ues r ead f r om t abl e
 TABLE STAMP = <on| of f > Use t i mest amp i n t abl e

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

21

 TABLE FLAG = <on| of f > Mar k ' ol d' ent r i es
 TABLE DEBUGDEPTH = <val ue>* * I nt er nal Use * *

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

22

Table of Contents

I . Introduction__2

I I . Chess Algorithms and AliBaba__3

I I I . Enhancements to AliBaba __5

IV Collisions and Replacement Schemes_____________________________________8

V. The Experiment __9

VI . Results and Discussion___12

VI I . Conclusion__17

VI I I . Acknowledgments ___18

IX References ___19

Appendix A - AliBaba+ Command Reference________________________________20

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

