3 # © Copyright 2021-2022, Scott Gasch
5 """Mathematical helpers."""
10 from heapq import heappop, heappush
11 from typing import Dict, List, Optional, Tuple
16 class NumericPopulation(object):
17 """A numeric population with some statistics such as median, mean, pN,
20 >>> pop = NumericPopulation()
22 >>> pop.add_number(10)
32 >>> round(pop.get_stdev(), 2)
34 >>> pop.get_percentile(20)
36 >>> pop.get_percentile(60)
41 self.lowers, self.highers = [], []
43 self.sorted_copy: Optional[List[float]] = None
45 def add_number(self, number: float):
46 """Adds a number to the population. Runtime complexity of this
47 operation is :math:`O(2 log_2 n)`"""
49 if not self.highers or number > self.highers[0]:
50 heappush(self.highers, number)
52 heappush(self.lowers, -number) # for lowers we need a max heap
53 self.aggregate += number
57 if len(self.lowers) - len(self.highers) > 1:
58 heappush(self.highers, -heappop(self.lowers))
59 elif len(self.highers) - len(self.lowers) > 1:
60 heappush(self.lowers, -heappop(self.highers))
62 def get_median(self) -> float:
63 """Returns the approximate median (p50) so far in O(1) time."""
65 if len(self.lowers) == len(self.highers):
66 return -self.lowers[0]
67 elif len(self.lowers) > len(self.highers):
68 return -self.lowers[0]
70 return self.highers[0]
72 def get_mean(self) -> float:
73 """Returns the mean (arithmetic mean) so far in O(1) time."""
75 count = len(self.lowers) + len(self.highers)
76 return self.aggregate / count
78 def get_mode(self) -> Tuple[float, int]:
79 """Returns the mode (most common member in the population)
82 count: Dict[float, int] = collections.defaultdict(int)
85 for n in self.highers:
87 return dict_utils.item_with_max_value(count)
89 def get_stdev(self) -> float:
90 """Returns the stdev so far in O(n) time."""
92 mean = self.get_mean()
96 variance += (n - mean) ** 2
97 for n in self.highers:
98 variance += (n - mean) ** 2
99 count = len(self.lowers) + len(self.highers) - 1
100 return math.sqrt(variance) / count
102 def get_percentile(self, n: float) -> float:
103 """Returns the number at approximately pn% (i.e. the nth percentile)
104 of the distribution in O(n log n) time. Not thread-safe;
105 does caching across multiple calls without an invocation to
106 add_number for perf reasons.
109 return self.get_median()
110 count = len(self.lowers) + len(self.highers)
111 if self.sorted_copy is not None:
112 if count == len(self.sorted_copy):
113 index = round(count * (n / 100.0))
114 assert 0 <= index < count
115 return self.sorted_copy[index]
116 self.sorted_copy = [-x for x in self.lowers]
117 for x in self.highers:
118 self.sorted_copy.append(x)
119 self.sorted_copy = sorted(self.sorted_copy)
120 index = round(count * (n / 100.0))
121 assert 0 <= index < count
122 return self.sorted_copy[index]
125 def gcd_floats(a: float, b: float) -> float:
126 """Returns the greatest common divisor of a and b."""
128 return gcd_floats(b, a)
133 return gcd_floats(b, a - math.floor(a / b) * b)
136 def gcd_float_sequence(lst: List[float]) -> float:
137 """Returns the greatest common divisor of a list of floats."""
139 raise ValueError("Need at least one number")
143 gcd = gcd_floats(lst[0], lst[1])
144 for i in range(2, len(lst)):
145 gcd = gcd_floats(gcd, lst[i])
149 def truncate_float(n: float, decimals: int = 2):
150 """Truncate a float to a particular number of decimals.
152 >>> truncate_float(3.1415927, 3)
156 assert 0 < decimals < 10
157 multiplier = 10**decimals
158 return int(n * multiplier) / multiplier
161 def percentage_to_multiplier(percent: float) -> float:
162 """Given a percentage (e.g. 155%), return a factor needed to scale a
163 number by that percentage.
165 >>> percentage_to_multiplier(155)
167 >>> percentage_to_multiplier(45)
169 >>> percentage_to_multiplier(-25)
172 multiplier = percent / 100
177 def multiplier_to_percent(multiplier: float) -> float:
178 """Convert a multiplicative factor into a percent change.
180 >>> multiplier_to_percent(0.75)
182 >>> multiplier_to_percent(1.0)
184 >>> multiplier_to_percent(1.99)
191 percent = 1.0 - percent
196 @functools.lru_cache(maxsize=1024, typed=True)
197 def is_prime(n: int) -> bool:
199 Returns True if n is prime and False otherwise. Obviously(?) very slow for
200 very large input numbers.
206 >>> is_prime(51602981)
209 if not isinstance(n, int):
210 raise TypeError("argument passed to is_prime is not of 'int' type")
218 # This is checked so that we can skip middle five numbers in below
220 if n % 2 == 0 or n % 3 == 0:
225 if n % i == 0 or n % (i + 2) == 0:
231 if __name__ == '__main__':