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Abstract

This paper introduces the APHID (Asynchronous Par-
allel Hierarchical Iterative Deepening) game-tree search
algorithm. APHID represents a departure from the ap-
proaches used in practice. Instead of parallelism based on
the minimal search tree, APHID uses a truncated game-
tree and all of the leaves of that tree are searched in par-
allel. APHID has been programmed as an easy to imple-
ment, game-independent ��� library, and has been tested on
several game-playing programs. Results for an Othello pro-
gram are presented here. The algorithmyields good parallel
performance on a network of workstations, without using a
shared transposition table.

1. Introduction

The alpha-beta ( ��� ) minimax tree search algorithm has
proven to be a difficult algorithm to parallelize. Although
simulations predict excellent parallel performance, most re-
sults are based on an unreasonable set of assumptions. In
practice, knowing where to initiate parallel activity is diffi-
cult since the result of searching one node at a branch may
obviate the parallel work of the other branches.

In real-world implementations, such as high performance
chess, checkers and Othello game-playing programs, the
programs suffer from three major sources of parallel inef-
ficiency (a similar model is presented in [6]).

The first is synchronization overhead. The search typ-
ically has many synchronization points where there is no
work available, which results in a high percentage of idle
time.

The second is parallelization overhead. This is the over-
head of incorporating the parallel algorithm, which includes
the handling of communication, and maintaining structures
to allow for allocation of work.

The third is search overhead. Search trees are really di-
rected graphs. Work performed on one processor may be
useful to the computations of another processor. If this in-
formation is not available, unnecessary search may be done.

These overheads are not independent of each other. For
example, increased communication can help reduce the

search overhead. Reducing the number of synchronization
points can increase the search overhead. In practice, the
right balance between these sources of program inefficiency
is difficult to find, and one usually performs many experi-
ments to find the right trade-offs to maximize performance.

Many parallel ��� algorithms have appeared in the liter-
ature (a more complete list is available elsewhere [1]). The
PV-Split algorithm recognized that some nodes exist in the
search tree where, having searched the first branch sequen-
tially, the remaining branches can be searched in parallel [5].
Initiating parallelism along the best line of play, the princi-
pal variation, was effective for a small number of proces-
sors, although variations on this scheme seemed limited to
speedups of less than 8 [7].

The idea can be generalized to other nodes in the tree.
At nodes where the first branch has been searched and no
cut-off occurred, the rest can likely be searched in paral-
lel. It is a trade-off – increased parallelism versus addi-
tional search overhead, since one of these parallel tasks
could cause a cut-off. This idea has been tried by a number
of researchers, such as Jamboree search [4] and ABDADA
[9]. The best-known instance of this type of algorithm is
called Young Brothers Wait (YBW) and was implemented in
the 	�
���������� chess program [3]. YBW achieved a 344-
fold speedup using a network of 1024 Transputers.

This class of algorithms cannot achieve a linear speedup
primarily due to synchronization overhead; the search tree
may have thousands of synchronization points and there
are numerous occasions where the processes are starved for
work. The algorithms have low search overhead, with the
absolute performance being strongly linked to the quality of
the move ordering within the game-tree.

This paper introduces the Asynchronous Parallel Hierar-
chical Iterative Deepening (APHID) game-tree search algo-
rithm. The algorithm represents a departure from the ap-
proaches used in practice. In contrast to other schemes,
APHID defines a frontier (a fixed number of moves away
from the root of the search tree), and all nodes at the fron-
tier are done in parallel. Each worker process is assigned an
equal number of frontier nodes to search. The workers con-
tinually search these nodes deeper and deeper, never having
to synchronize with a controlling master process. The mas-
ter process repeatedly searches to the frontier to get the latest
search results. In this way, there is effectively no idle time;



search inefficiencies are primarily due to search overhead.
APHID’s performance does not rely on the implementation
of a distributed transposition table, which makes the algo-
rithm suitable for loosely-coupled architectures (such as a
network of workstations), as well as tightly-coupled archi-
tectures.

Unlike some parallel ��� algorithms, APHID is designed
to fit into a sequential ��� structure. APHID has been imple-
mented as a game-independent library of routines. These,
combined with application-dependent routines that the user
supplies, allow a sequential ��� program to be easily con-
verted to a parallel program. Althoughmost parallel ��� pro-
grams take months to develop, the game-independent library
allows users to integrate parallelism into their application
with only a few hours of work.

2. The APHID Algorithm

Young Brothers Wait and other similar algorithms suf-
fer from three serious problems. First, the numerous syn-
chronization points and occasions where there is little or no
work to be done in parallel result in idle time. This suggests
that a new algorithm must strive to reduce or eliminate syn-
chronization and small work lists. Second, the chaotic na-
ture of a work-stealing scheduler requires algorithms such
as YBW and Jamboree to use a shared transposition table
to achieve good move ordering and reasonable performance.
ABDADA requires a shared transposition table to function
correctly. Third, the program may initiate parallelism at
nodes which are better done sequentially. For example, hav-
ing searched the first branch at a node and not achieved a cut-
off, Young Brothers Wait (in its simplest form) permits all of
the remaining branches to be searched in parallel. However,
if the second branch, for example, causes a cut-off, then all
the parallel work has been wasted. This suggests parallelism
should only be initiated at nodes where there is a very high
probability that all branches must be considered.

This section introduces the Asynchronous Parallel Hier-
archical Iterative Deepening (APHID) game-tree searching
algorithm. APHID has been designed to address the above
three issues. The algorithm is asynchronous in nature; it re-
moves all synchronization points from the ��� search and
from iterative deepening. Also, parallelism is only applied
at nodes that have a high probability of needing parallelism.
The top plies

�
of a game-tree near the root vary infrequently

between steps of iterative deepening. This relative invari-
ance of the top portion of the game-tree is exploited by the
APHID algorithm.

In its simplest form, APHID can be viewed as a mas-
ter/slave program although, as discussed later, it can be gen-
eralized to a hierarchical processor tree. For a depth

�

search, the master is responsible for the top
���

ply of the tree,
and the remaining

�������
ply are searched in parallel by the

slaves.

�
The ply of a node is its depth within the game-tree, starting with ply 0

at the root of the game-tree.

2.1. Operation of the Master in APHID

The master is responsible for searching the top
� �

ply of
the tree. It repeatedly traverses this tree until the correct
minimax value has been determined. The master is execut-
ing a normal ��� search, with the exception that APHID en-
forces an artificial search horizon at

�	�
ply from the root.

Each leaf node in the master’s
���

ply game-tree is being
asynchronously searched by the slaves. Before describing
the master’s stopping condition, we must first describe how
the master searches the

���
ply tree.

When the master reaches a leaf of the
���

ply tree, it uses a
reliable or approximate value for the leaf, depending on the
information available. If a

�
��� �
ply search result is avail-

able from the slave, that will be used. However, if the
������

ply result is not available, then the algorithm uses the deep-
est search result that has been returned by the slave to gener-
ate a guessed minimax value. Any node where we are forced
to guess are marked as uncertain.

As values get backed up the tree, the master maintains a
count of how many uncertain nodes have been visited in a
pass over the tree. As long as the score at any of the leaves
is uncertain, the master must do another pass over the tree.
Once the master has a reliable value for all the leaves in its

���

ply tree, the search of the
�

ply tree is complete. The control-
ling program would then proceed to the next iteration by in-
crementing

�
and asking the master to search the tree again.

The slaves are responsible for setting their own search
windows, based on information from the master. Some-
times, the information returned by the slave may not be use-
ful to the master. For example, a slave can tell the master
that the score of a given node is less than 30, but the mas-
ter may want to know if the score is in between -5 and 5. In
this case, a “bad bound” search is generated, and the search
window parameters, � and � , must be communicated to the
slave processor. Any nodes where we are waiting for “bad
bound” information are considered as uncertain by the mas-
ter, even though we have a score bound for the

�������
ply

search. Eventually, the slave will return updated informa-
tion that is consistent with both the original information and
the search window requested.

2.2. The APHID Table

If a node is visited by the master for the first time, it is
statically allocated to a slave processor. This information is
recorded in a table, the APHID table, that is shared by all
processors. Figure 1 shows an example of how the APHID
table would be organized at a given point in time.

The APHID table is partitioned into two parts: one which
only the master can write to, and one which only the slave
that has been assigned that piece of work can write to. Any
attempt to write into the table generates a message that in-
forms the slave or the master process of the update to the in-
formation. The master and slave only read their local copies
of the information; there are no explicit messages sent be-
tween the master and the slave asking for information.

The master’s half of the table is illustrated above the
dashed line in Figure 1. For each leaf that has been visited
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Figure 1. A Snapshot of an APHID Search

by the master, there is an entry in the APHID table. Informa-
tion maintained on the leaves includes the moves required to
generate the leaf positions from the root R, the approximate
location of the leaf in the tree (which is used by the slave to
prioritize work), whether this leaf was touched on the last
pass that the master executed, and the number of the slave
that the leaf was allocated to.

In our example, we can see that there are approximately
the same number of leaves which have been allocated to
each slave. Note that there is an additional leaf, 8, that is
not represented in the master’s

�	�
ply search tree. This leaf

node has been visited on a previous pass of the
���

ply search
tree, but was not touched on the latest pass. However, the
information that the slave has generated may be needed in a
later pass of the tree and is not deleted by the master.

Leaves are allocated to the slaves in a round-robin man-
ner. Although there may be better methods of allocating
leaves, it has been found that this is a reasonable method of
balancing the work on a small number of processors.

The slave’s part of the table, illustrated by the area below
the dashed line, contains information on the result of search-
ing the position to various depths of search. The “best” in-
formation and the ply to which the leaf was examined is
given underneath each leaf node in the tree. For leaf 1, the
score returned is -1 with a search depth of 4. Leaf 3 illus-
trates that the score information returned by the slave is not
necessarily an exact number. The slaves maintain an upper
bound and a lower bound on the score for each ply of search
depth. The score is known to be exact when the upper and
lower bounds are the same.

2.3. Operation of Slave in APHID

A slave process essentially executes the same code that a
sequential ��� searcher would. The process simply repeats
the following steps until the master tells it that the search

is complete. The slave looks in its portion of its local copy
of the APHID table, and finds the highest priority node to
search. The slave then executes the search, and reports the
result back to the master (getting an update to its APHID ta-
ble in return).

The work selection criterion is primarily based on the
depth to which the slave has already searched a node. The
secondary criterion, if the primary criterion is the same, is
based on the location of the node within the master’s game-
tree. This secondary criterion is necessary since it is usu-
ally beneficial to generate the results in a left-to-right order
for the master. Children of nodes are usually considered in a
best-to-worst ordering, implying that the left-most branches
at a node have a higher probability of being useful than the
right-most ones.

A node that has a priority of zero (because it is no longer
part of the master’s tree) will not be selected for further
search. For Slave 2, we notice that Leaf 8 would be searched
if it had been touched by the master. Leaf 8 is ignored by the
scheduling algorithm because it is not currently part of the
master’s tree.

Before a search can be executed, an ��� search window
must be generated by the slave. The master continually ad-
vises the slaves of the leaf’s location within the master’s
tree, and the likely value of the root of the master’s tree.
Although the width of the search window is application-
dependent, one normally wants to center the window around
this hypothesized root value, plus or minus a factor to reflect
the uncertainty in it.

There are three types of update messages that a slave re-
ceives from the master: a new piece of work has been added
to the slave processor’s APHID table, the location of a leaf
node within the master’s tree has changed (changing the sec-
ondary work scheduling criterion), and a notification of a
“bad bound” on a node. The bad bound message alerts the
slave that a position’s search information is not sufficient to
save the node from being uncertain. In this case, the slave
must re-search the node with the ��� search window sent by
the master to the ply requested.

As a performance improvement, we want to force the
slave to always work on nodes for the current search depth
of the master. When all the slave’s work has been searched
to the required depth, rather than becoming idle, it starts re-
searching its nodes an additional ply deeper, in anticipation
of the next iteration (depth

� ���
). When this is happening,

the slave routinely checks the communication channel for
messages from the master. If the slave receives a new piece
of work to do at

� � ���
ply or less, the search is immediately

aborted and control is returned to the slave’s scheduling al-
gorithm.

2.4. Implementation

The APHID algorithmhas been written as an application-
independent library of C routines. The library was written
to provide minimal intervention into a working version of
sequential ��� or its common variants. Since the library is
application-independent, a potential user must write a few
application-dependent routines (such as move format, how
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Figure 2. APHID Speedups in Keyano

to make/unmake moves, position format, setting a window
for a slave’s search, etc.). APHID’s message passing was
written using PVM [8] to allow for the maximum portability
among available hardware.

To parallelize a sequential ��� program, the user modi-
fies their sequential search routine to add approximately 20
lines of code. This search routine functions as the search al-
gorithm for both the master and the slave processes. There
are a few additional procedure calls that have to be added to
the iterative deepening routine that calls the search routine.
A complete explanation of the current APHID interface can
be found elsewhere [2].

3. Experiments

The APHID game-independent library was inserted into
the Othello program, Keyano, which has frequently finished
in the top five in international computer Othello tournaments
over the last three years.

To test the algorithm, Keyano was programmed to search
with its midgame search algorithm to a depth of

� � ���
ply, with the master controlling the top

��� ��� ply of the
tree. The search depth is typical of what the parallel pro-
gram could achieve within the tight time constraints of Oth-
ello competitions (typically 30 minutes per game). Deeper
searches will yield better speedups, but are not indicative
of what can be achieved in real time. The 74 positions ex-
amined were the positions from move 2 to move 38 in the
two games of the 1994 World Championship final between
David Shaman and Emmanuel Caspard.

Parallel tests were run on 4, 8 and 16 workstations on
a network of SparcStation IPC computers with 12 MB of
RAM, running the SunOS 4.1.4 operating system. The com-
puters are linked with 1 segment of 10 base 2 (thin net) Eth-
ernet. One workstation in each experiment was completely
occupied by the master process, while the other workstations
each ran a slave process. Figure 2 illustrates the average
speedups for 7 to 12 ply searches. The graph shows that as
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the depth of the search increases, so does the speedup.
The overheads in the algorithm are illustrated in Figure 3

as percentages of the sequential time required to search all
74 positions. The total overhead represents the additional
computing time required by the parallel algorithm to achieve
the same result:

�����
	�������������	�� �
��� 	��
	�����������������! #" �%$ �'&)(��' )����	��������*�
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where � is the number of processors. The total overhead is
also a sum of the four overheads: master overhead, paral-
lelization overhead, speculative search and search overhead.

The master overhead is the approximate penalty incurred
by having a single processor being allocated completely to
the handling of the master. This is not simply

�
- , but is the

time taken away by the master: the parallel time divided by
the sequential time.

The parallelization overhead is the penalty incurred by
the APHID library on the speed of the slaves. Keyano visits
approximately 8700 nodes per second on a single SparcSta-
tion IPC. Using the APHID library, the slaves were visiting
7600 nodes per second. The difference between this rate and
the sequential program’s node rate is derived partially from
the overhead of using PVM, and partially from the work-
scheduling algorithm on each slave. In the authors’ experi-
ence, this parallelization overhead is similar to implemen-
tations of YBW on equivalent hardware (the results have
not been presented here because Keyano has been rewritten
since the original experiment with YBW in 1994).

The search overhead starts at 30% and increases very
gradually as we increase from 4 to 16 processors. Most of
the search overhead is incurred by attempting to do searches
before the correct search window is available. Thus, the
slaves use ��� search windows that are larger than those in
the sequential program. Part of the search overhead is due
to information deficiency, since there is no common shared
data between the slave processes.



Since we only search each position to 12 ply, the asyn-
chronous nature of the slaves will result in some work being
done at 13 ply (or more). The speculative search line rep-
resents the amount of additional search beyond what the se-
quential algorithmwould have done. However, in our exper-
iments, the speculative search results were not used so that
the parallel program produces the identical results as the se-
quential version, verifying APHID’s correctness. In a real
tournament game, this speculative search could be used to
look an extra move ahead on some key variations, since it
is highly likely that the moves extended a ply ahead would
be in the left-most branches of the tree. Note that other al-
gorithms, such as Young Brothers Wait, have processors go
idle when there is no work left to do on the current iteration.

Weill tested YBW and ABDADA on a CM-5 using a
different Othello program [9]. YBW achieved a 9.5-fold
speedup and ABDADA achieved a 11-fold speedup on 16
processors. Although the APHID results are not as good,
they were achieved without a shared transposition table.
Both ABDADA and YBW will get poor performance on a
network of workstations, since the shared transpositiontable
is critical to the performance of the algorithms.

Other results for parallel search algorithms on a network
of workstations have been presented for the game of chess
[7]. There is more parallelism available in the wider chess
trees, which results in better speedups in comparison to Oth-
ello [9]. Although, a distributed transpositiontable was used
to improve the performance of the parallel chess searches,
a speedup of 7 was possible on 16 processors. These re-
sults were extrapolated to a speedup of 8 on 32 processors.
The beneficial effects of the distributed transposition table
are derived primarily in the top plies of the search tree, and
these benefits are duplicated in APHID by maintaining the
top

���
ply exclusively on the master processor.

The APHID algorithm can support a shared transposition
table, but the algorithm does not depend on its presence.
Thus, the algorithm gets good performance on a loosely-
coupled network of workstations and will perform even bet-
ter on tightly-coupled processors.

4. Conclusions and Future Work

The APHID algorithm yields good speedups on a net-
work of workstationswithout the necessity of a shared trans-
position table. Although the authors are pleased with these
preliminary results, a lot of work is left to be done.

The load balancing of the APHID algorithm has not
been addressed in this paper. More intelligent schemes than
round-robin allocation of work are currently being investi-
gated.

Our current implementation of APHID uses a fixed-depth
horizon for the master’s tree. All positions are not equal in
the amount of search effort they require. APHID is being
generalized to support a dynamically changing horizon in
the master.

The results reported here are based on a simple mas-
ter/slave relationship. As the number of processors in-
creases, the master increasingly becomes a bottleneck.

APHID has been generalized to work in a hierarchical pro-
cess tree. Mid-level processes would behave as a slave to-
ward their master, and as a master toward their slaves. The
scalability of the algorithm has yet to be demonstrated on ar-
chitectures of more than 16 processors, due to resource lim-
itations.

Perhaps the biggest contribution of APHID is that it eas-
ily fits into an existing sequential ��� program. As a val-
idation of this, APHID has been integrated into a chess
and checkers program with one afternoon of effort. The
application-dependent code is roughly 150 lines, and took
less than an hour to write. Although all of the programs in
the original testing were designed at the University of Al-
berta, the second stage of the experiment will be to release
the code to interested members of the high-performance
games community outside of the University of Alberta.
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