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Abstract
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University of Toronto

2001

The alpha-beta algorithm is a well known method for the sequential search of game trees. Two

methods, young brothers wait concept and dynamic tree splitting, have been used successfully

in parallel game tree search. First, this work introduces the notion of an exponentially ordered

game tree as a model for the game trees encountered in practice. Second, exponentially ordered

trees are used in the study of the tree splitting methods used by young brothers wait concept

and dynamic tree splitting. Finally, a new tree splitting method based on neural networks is

introduced and is found to outperform the other two methods on certain types of trees.
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Chapter 1

Introduction

The seminal paper by Claude E. Shannon [22] introduced the concept of game trees along with

a simple algorithm (MiniMax) for searching them. Shannon was primarily interested in creating

a computer player for the game of chess. Here we consider the trees that arise from a particular

class of games. Each game in this class has the following properties:

• There are two players involved in the game: player 1 and player 2.

• The two players take turns making moves. At any position in the game, a finite number

of moves are available to the player on move.

• The game is deterministic — there are no elements of chance in the game.

• It is a game of perfect information. That is, both players know the entire state of the

game at all times. For example, chess is a game of perfect information. For the duration

of the game, both players know the board position. However, 2-player poker is not a game

of perfect information. Although, player 1 can see his cards, he cannot see the cards that

player 2 holds.

• There are three possible outcomes in the game: a win for player 1, a win for player 2 or a

draw. Games that do not end in a draw are also included in the class. These games have

two possible outcomes: a win for player 1 or a win for player 2.

The construction and the subsequent search of game trees forms the basis of many computer

programs designed to play two player strategy games. A game tree is a way of representing the

possibilities that are available to the players involved in the game. The search of the game tree

yields the optimal sequence of play for both sides.

Efficient algorithms for the sequential search of game trees have been in existence for a

long time (since 1963 [12]). In a tree where good moves are searched before bad ones, a good

1



Chapter 1. Introduction 2

sequential tree search algorithm will examine a fraction of the entire tree. On a parallel system,

sequential algorithms are extended to allow several processors to share the search effort. Initial

attempts at parallel search had limited success on a large number of processors [17] but more

recent efforts have demonstrated that a large number of processors can be used effectively [5].

One of the biggest difficulties in parallel search is in determining where multiple processors can

be used to split up the search effort. The main focus of this work is to explore alternative ways

of choosing where to split the tree. A comparison of the tree splitting techniques in current use

was not previously available. This work produces such a comparison using artificially generated

trees. A new tree splitting technique is also introduced and its performance is compared to

previously existing techniques.

Chapter 2 explores the different algorithms available for sequential tree search. Three ap-

proaches to parallel search are examined in chapter 3. Chapter 4 introduces the concept of

artificially generated trees. A new node classification technique is introduced in chapter 5 and

its performance is compared to existing techniques using a sequential tree searcher. Chapter 6

studies the performance of three tree splitting techniques within a parallel tree searcher.



Chapter 2

Game Tree Search

2.1 Introduction

A simple tree for a two-player game is presented in Figure 2.1. A node in the tree represents

a position in the game while a branch represents a move available at a particular position.

Player 1 is on move at nodes with the rectangular graphic and player 2 is on move at nodes

with a circle graphic. For example, at the Root node, player 1 is on move and the player has

two moves available: a and b. Each leaf node has been assigned a score that indicates how

valuable that position is. A positive score indicates that player 1 is winning while a negative

score indicates that player 2 is winning; a score of 0 indicates a draw. The magnitude of the

score conveys important information as well. Higher the score, more favorable a position is for

player 1. Similarly, lower the score, more favorable a position is for player 2. Note that this

scoring scheme is arbitrary and there are several possible schemes that can be used as long as

the scoring scheme allows one to distinguish which of the two players is winning.

While the above discussion involves a tree for a two-player game, a game tree can be

constructed for a large class of problems that doesn’t involve games. All that a game tree

requires is that there be two opposing forces and that they occupy alternate levels in the tree.

The problem in game tree search is to find the game tree value. The value of a game tree

is the score of the leaf node that is reached when both sides exercise their best options. From

a practical viewpoint, what one really needs to find is the option at the root that leads to the

game tree value. In the case of the tree in Figure 2.1, the best option is the move that gives

player 1 the best chance of winning assuming that both players are playing perfectly. Keeping

track of the path that leads to the game tree value is a trivial enhancement to an algorithm

that determines this value. In the discussions that follow, for simplicity, it is assumed that the

discovery of the game tree value is equivalent to the discovery of the path that leads to that

value.

3
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Figure 2.1: A simple game tree.

Consider the problem of finding the game tree value for the tree in Figure 2.1. Ideally,

player 1 wants to guide the game towards position T because that has the highest score from

his standpoint. Assume that player 1 plays move b in order to start making progress toward

position T. As far as player 2 is concerned, move f plays right into player 1’s hands. Player 2

obtains a better position by playing move g. If player 2 chooses move g then player 1 follows

it up with move u and the final position, U, has a score of −1. Thus, player 1’s original plan

of guiding the game towards T can be easily thwarted by a careful player 2. Consider what

happens when player 1 chooses move a. Now, if player 2 plays c then player 1 chooses i and we

obtain a score of 7. However, if player 2 plays d then player 1 chooses l and the final position

has a score of 4. A similar analysis on e shows that it leads to a score of 5. Clearly, player 2

should choose d. So the sequence of moves, assuming perfect play by both sides, is a, d, l. This

sequence will be referred to as the principal variation. The term principal variation is used to

describe the sequence of moves that lead to the game tree value. For the tree in Figure 2.1, the

game tree value is 4.

2.2 Definitions

All algorithms described in this work expand the branches at a node in a left to right order. A

branch or child node, m, is said to come before another branch or child node, n, if m is to the

left of n. A branch or child node is said to be the first at a node if it is in the leftmost position.

In addition to the search order defined above, the algorithms search the tree in a depth

first manner. Depth first techniques for game tree search require very little memory and the

memory requirement does not grow exponentially with the tree size.
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MiniMax(node)

1: if node.depth = 0 then

2: return Evaluate(node)

3: if node.type = max then

4: score ← −∞
5: else

6: score ← +∞
7: for i ← 1 to node.branch.length

8: new node ← Traverse(node,node.branch[i ])

9: value ← MiniMax(new node)

10: if node.type = max then

11: if value > score then

12: score ← value

13: else

14: if value < score then

15: score ← value

16: return score

Figure 2.2: The mini-max algorithm.

2.3 The Mini-Max Algorithm

In the tree of Figure 2.1, at the nodes where player 1 is on move, player 1 will select the move

that maximizes his/her score. Similarly, the nodes where player 2 is on move, player 2 will

select the move that minimizes his/her score. Thus, we can classify the nodes of a game tree

as being one of two types: maximizing or minimizing. This observation leads directly to the

mini-max algorithm in Figure 2.2.

Depending on whether a node is maximizing or minimizing, the algorithm keeps track of

the largest or the smallest score, respectively. A leaf node is reached when the remaining depth

(node.depth) is equal to zero. At a leaf node, the Evaluate function is called to determine the

score associated with the node.

In performing its work, the mini-max algorithm explores every node in the game tree.

Consider the application of this algorithm to chess. On average, a chess position has 32 possible

moves (refer to Section 4.3.2). A tree of depth n would contain 32n leaf nodes. Clearly, the

mini-max algorithm is not practical for a chess tree when the depth exceeds 5.
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NegaMax(node)

1: if node.depth = 0 then

2: return EvaluateNegaMax(node)

3: score ← −∞
4: for i ← 1 to node.branch.length

5: new node ← Traverse(node,node.branch[i ])

6: value ← −NegaMax(new node)

7: if value > score then

8: score ← value

9: return score

Figure 2.3: The nega-max algorithm.

2.4 The Nega-Max Formulation

The mini-max algorithm can be simplified by eliminating the distinction between maximizing

and minimizing nodes. By simply negating the result returned from the recursive call in Fig-

ure 2.2, each node can be treated as a maximizing node. However, another modification is

necessary to achieve the same result as the mini-max algorithm. At a leaf node, the Evalu-

ate function has to return a score from the viewpoint of the player on move. For example,

consider the case of a leaf node that has a score of −6 in the original mini-max scheme. The

score indicates that the position favors player 2. In the new scheme, if player 1 is on move,

a score of −6 would be returned. However, if player 2 is on move, then a score of 6 would

be returned. The evaluation function that implements this functionality will be referred to as

EvaluateNegaMax. Figure 2.3 illustrates the nega-max algorithm [12] that is obtained when

one implements the changes described.

2.5 The Alpha-Beta Algorithm

A closer examination of the mini-max algorithm reveals possible enhancements to the basic

technique. Table 2.1 illustrates the progress of the algorithm on the tree of Figure 2.1. It is

assumed that the expansion at each node proceeds in a left to right order. We start at the Root

node, which initially has a score of −∞, and the exploration begins with branch a. Node A

starts with a score of +∞ since it is a minimizing node. The process of recursive calls continues

until leaf node I is expanded. Here the recursion stops and a value of 7 is returned. At node
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C, the old value, −∞, is overwritten with the 7 that is returned by node I. Eventually, node A

obtains a score of 4 at step 18. Search at node A proceeds with the traversal of branch e. Node

E, being a maximizing node, has an initial score of −∞. On exploring branch o, node E obtains

a score of 5. This is where the enhancement can be made. Since node E is a maximizing node,

the score can only go higher than 5. However, it is also known that at node A, a minimizing

node, the score is 4. Node A will reject any value that is greater than or equal to 4. Thus, the

unexplored branches rooted at node E can be eliminated from the search since they will have

no effect on the score at node A. Such an elimination is termed a cut-off in game tree parlance.

There must be communication between the adjacent levels in the tree in order to determine

when search at a node becomes no longer necessary. The enhanced version of the mini-max

algorithm, which is referred to as the weak alpha-beta algorithm [12], is illustrated in Figure 2.4.

The best score obtained at any node is passed down to the successor as a bound so that cut-offs

can be made.

The weak alpha-beta algorithm still misses some cut-offs. Consider the application of the

algorithm to the tree of arbitrary depth as illustrated in Figure 2.5. After node A has been

explored, the Root will have a score of 4. Node B will receive 4 as a bound from the Root.

Since no search has been done at node B, node C receives an infinite bound. Similarly, node

E also receives an infinite bound from node C. However, the bound that was applied at node

B still applies to node E since the Root will reject any score that is less than or equal to 4.

In this particular case, additional cut-offs can be made during the search of the subtree rooted

at E if the highest score obtained at a maximizing node is carried downwards as a bound. A

similar argument can be made for the smallest score at minimizing nodes. Thus, the algorithm

can be enhanced further by maintaining two bounds:

• alpha (lower bound): Keeps track of the highest score obtained at a maximizing node

higher up in the tree and is used to perform cut-offs at minimizing nodes.

• beta (upper bound): Keeps track of the lowest score obtained at a minimizing node higher

up in the tree and is used to perform cut-offs at maximizing nodes.

The resulting technique is referred to as the alpha-beta [12] algorithm and is summarized

in Figure 2.6. To determine the game tree value, the algorithm is invoked with the call

AlphaBeta(Root,−∞, +∞). The pair of numbers, (−∞,+∞), defines the search window.

An illustration of the cut-offs achieved by the alpha-beta algorithm is shown in Figure 2.7.

At node E, branches p and q are eliminated. When the search arrives at node B, there is a

lower bound of 4. On exploring F, node B obtains a score of 8. A similar exploration of G

yields −1. This exceeds the lower bound and the search is terminated at node B ; node H is

then cut-off.
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Step Node Score Action

1 Root −∞ Explore a

2 A +∞ Explore c

3 C −∞ Explore i

4 I 7 Return 7

5 C 7 Explore j

6 J 2 Return 2

7 C 7 Explore k

8 K −9 Return −9

9 C 7 Return 7

10 A 7 Explore d

11 D −∞ Explore l

12 L 4 Return 4

13 D 4 Explore m

14 M −2 Return −2

15 D 4 Explore n

16 N −3 Return −3

17 D 4 Return 4

18 A 4 Explore e

19 E −∞ Explore o

20 O 5 Return 5

21 E 5 Explore p

22 P −1 Return −1

23 E 5 Explore q

24 Q 2 Return 2

25 E 5 Return 5

26 A 4 Return 4

Table 2.1: Partial analysis of how the mini-max algorithm explores the tree of Figure 2.1.
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WeakAlphaBeta(node, bound)

1: if node.depth = 0 then

2: return Evaluate(node)

3: if node.type = max then

4: score ← −∞
5: else

6: score ← +∞
7: for i ← 1 to node.branch.length

8: new node ← Traverse(node,node.branch[i ])

9: value ← WeakAlphaBeta(new node, score)

10: if node.type = max then

11: if value ≥ bound then

12: return bound

13: if value > score then

14: score ← value

15: else

16: if value ≤ bound then

17: return bound

18: if value < score then

19: score ← value

20: return score

Figure 2.4: The weak alpha-beta algorithm.
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The alpha-beta algorithm can be simplified using the nega-max formulation in a manner

similar to the simplification of the mini-max algorithm. The reformulated algorithm is presented

in Figure 2.8. Each node is treated as a maximizing node, thus beta is used as the bound that

determines when cut-offs are possible. Furthermore, when making a recursive call, the bounds

are reversed (the lower bound becomes the upper bound and vice versa) and negated. This

allows the sub-node to be treated as a maximizing node. Note that evaluations are computed

by EvaluateNegaMax as required by the nega-max scheme.

The efficiency of the alpha-beta algorithm is dependent on the order in which the branches

are searched. If branches that lead to high scores (or low scores in the case of a minimizing

node) are expanded first, then tighter bounds will be obtained for the rest of the search. This

will result in a higher number of cut-offs. For some problems, the quality of a branch is not

known until the leaves are reached, thus it is difficult to control the algorithm so that it searches

“good” branches first. However, in many cases, an educated guess can be made regarding the

quality of a branch from some preliminary information. Where such information is available,

the efficiency of the search is greatly enhanced if the branches are explored in order of decreasing

quality.

2.6 A Perfectly Ordered Game Tree and Node Classification

Consider the game tree in Figure 2.9. It is a revised version of the tree in Figure 2.1. The

branches have been arranged so that the best branch at each node appears in the leftmost

position. Such a tree is perfectly ordered for an alpha-beta search that expands branches in a

left to right order. The nodes of a perfectly ordered game tree can be classified into three types
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AlphaBeta(node, alpha, beta)

1: if node.depth = 0 then

2: return Evaluate(node)

3: if node.type = max then

4: score ← alpha

5: else

6: score ← beta

7: for i ← 1 to node.branch.length

8: new node ← Traverse(node,node.branch[i ])

9: if node.type = max then

10: value ← AlphaBeta(new node, score, beta)

11: if value ≥ beta then

12: return beta

13: if value > score then

14: score ← value

15: else

16: value ← AlphaBeta(new node, alpha, score)

17: if value ≤ alpha then

18: return alpha

19: if value < score then

20: score ← value

21: return score

Figure 2.6: The alpha-beta algorithm.
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Figure 2.7: Cut-offs made by the alpha-beta algorithm.

AlphaBeta(node, alpha, beta)

1: if node.depth = 0 then

2: return EvaluateNegaMax(node)

3: for i ← 1 to node.branch.length

4: new node ← Traverse(node,node.branch[i ])

5: value ← −AlphaBeta(new node,−beta,−alpha)

6: if value ≥ beta then

7: return beta

8: if value > alpha then

9: alpha ← value

10: return alpha

Figure 2.8: The alpha-beta algorithm reformulated using the nega-max scheme.
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Figure 2.9: A perfectly ordered game tree.
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Figure 2.10: Cut-offs achieved by the alpha-beta algorithm on the tree of Figure 2.9.

[12, 17]:

• Type 1 or Principal Variation (PV) Nodes

• Type 2 or CUT Nodes

• Type 3 or ALL Nodes

The type of each node is indicated in Figure 2.10. The figure also illustrates the cut-offs made

by an alpha-beta algorithm on the perfectly ordered tree.

2.6.1 Type 1 or PV Nodes

In a perfectly ordered tree, the first sequence of moves searched by the alpha-beta algorithm is

also the principal variation. This is the case for any perfectly ordered tree. Each node of the
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principal variation is described as being type 1 or PV.

Recall that a full alpha-beta search is initiated with the call AlphaBeta(Root,−∞, +∞).

Each PV node receives infinite lower and upper bounds. This stems from the fact that PV

nodes constitute the start of the search and scores have yet to be established. Since the bounds

are infinite, a cut-off never occurs at a PV node and all branches are searched. However, the

search order at a PV node is important. For example, consider a PV node of the maximizing

type. Initially the lower bound is −∞ and the upper bound is +∞. The score returned by the

first branch will be used as the lower bound for the next branch to be expanded. Clearly, if

the score returned by the first branch is the highest possible at that node, the bound will not

change for the duration of the search at that node. Furthermore, the search benefits from the

high lower bound that was established right at the start.

The first successor to a PV node is also a PV node while the other successors are CUT

nodes.

2.6.2 Type 2 or CUT Nodes

CUT nodes are successors to PV nodes and ALL nodes. Since a CUT node is not the first

successor at a PV node, it will have a bound as established by the PV node’s first branch.

Once again, consider a PV node of the maximizing type. The second branch to be expanded at

the PV node will lead to a minimizing CUT node. The score returned by the PV node’s first

branch serves as the lower bound at the CUT node. Note that the CUT node does not have an

upper bound since that was never determined at the maximizing PV node — a PV node only

determines one of the two bounds. Since the tree being searched is perfectly ordered, the first

branch searched at a CUT node immediately leads to a cut-off. Just as with PV nodes, search

order is important at CUT nodes.

The first successor to a CUT node is an ALL node whereas the rest of the successors are

cut-off.

2.6.3 Type 3 or ALL Nodes

An ALL node is a successor to a CUT node. Being the first branch at a CUT node, the ALL

node obtains the same bound information as its parent. Consider the example of a minimizing

CUT node. The CUT node will have a valid lower bound, however, the upper bound will be

infinite. The first branch to be expanded at the CUT node leads to a maximizing ALL node.

Since the upper bound is infinite at the ALL node, no cut-offs can be made and all branches

are searched. Due to the perfect ordering of the tree, the scores returned by the ALL node’s

successors are not high enough to increase the lower bound — the scores returned are worse
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than that established by the PV node higher up in the tree. In fact, the search order at an

ALL node is irrelevant.

The successors at an ALL node are all CUT nodes.

2.7 Aspiration Search

When the alpha-beta algorithm is invoked with the call AlphaBeta(Root, alpha, beta), it re-

turns a value between alpha and beta — note that alpha and beta are valid return values as

well. Normally, to determine the game tree value, one would make a call to the algorithm with

alpha and beta set to −∞ and +∞ respectively. Consider the case where the final game tree

value is known with some certainty. Greater efficiency can be achieved by employing aspiration

search [16, 15]. Figure 2.11 illustrates the process. The estimated game tree value is V . An

error factor e is used to determine the two initial bounds alpha and beta. The lower bound is

set at one error factor below V and the upper bound is set at one error factor above V . When

the alpha-beta algorithm is called with these bounds, the return value is one of three types:

• A return value between alpha and beta: In this case the game tree value has been deter-

mined and further search is not necessary. The tree search was highly efficient due to the

narrow search window.

• A return value equal to alpha: The search has failed-low. The real game tree value is not

known; all that is known is that the tree value is less than or equal to alpha.

• A return value equal to beta: The search has failed-high. The game tree value is greater

than or equal to beta.

In a fail-low or fail-high situation, a new search must be performed with new bounds in order

to determine the real tree value. During a new search, many of the nodes that were visited by

the initial search may be revisited. Clearly, the new search reduces efficiency; however, note

that this situation only arises when the original search fails — a situation that does not arise

too often since there is an estimate for the final game tree value.

2.8 The Negascout Algorithm

As mentioned in Section 2.5, when there is some preliminary “quality” information about the

branches at a node, the alpha-beta algorithm benefits from the expansion of the branches in

order of decreasing quality. If this preliminary information can be used to predict which of

the branches is the best at a node with reasonable accuracy, a technique similar to aspiration

search can be employed recursively to obtain a highly efficient tree searcher.
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1: alpha ← V − e

2: beta ← V + e

3: score = AlphaBeta(Root, alpha, beta)

4: if score = beta then

5: score = AlphaBeta(Root, beta, +∞)

6: elsif score = alpha then

7: score = AlphaBeta(Root,−∞, alpha)

Figure 2.11: Aspiration search.

The negascout algorithm [20] 1 is illustrated in Figure 2.12. Only the first branch at each

node is searched with the full window. The rest of the branches are searched with a null-window.

A null-window describes the case where alpha and beta are separated by 1 unit. In this case

no real search is performed — the null-window search amounts to a test on the subtree to

determine whether its value is less than or equal to alpha or greater than or equal to beta. In

the negascout algorithm, after searching the first branch with the full window, the rest of the

branches are simply tested to see whether they have a value that exceeds the best score so far

at that node. If any of the branch tests fails-high, a new search is performed with an expanded

window to establish the true score of that particular branch.

2.9 Iterative Deepening

Rather than tackle the entire tree at once, depending on the application, it may be advantageous

to determine the tree value in steps. First, the game tree value and principal variation for a

tree of depth one is determined. Then, a similar process is carried out on a tree of depth

two. This iteratively deepening process [16, 15] continues until the tree of the required depth

has been searched. There are two advantages to this scheme. In a situation where there is a

time restriction on the search, the search of the entire tree in a single pass may be too time

consuming. However, if the search is carried out in steps, even if the search needs to be stopped

at some depth, the previous iteration provides a reasonable solution albeit at a lower search

depth. The second advantage is that each iteration can collect useful information about the

tree for the next iteration. Consider some examples of this iteration-to-iteration information

1The algorithm presented here is a simplified version of the one presented in [20]. In particular, this version
does not make use of the fail-soft extension and performs new searches even when the height of the subtree is
less than two.
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Negascout(node, alpha, beta)

1: if node.depth = 0 then

2: return EvaluateNegaMax(node)

3: new node ← Traverse(node,node.branch[1])

4: value ← −Negascout(new node,−beta,−alpha)

5: if value ≥ beta then

6: return beta

7: if value > alpha then

8: alpha ← value

9: for i ← 2 to node.branch.length

10: new node ← Traverse(node,node.branch[i ])

11: value ← −Negascout(new node,−alpha − 1,−alpha)

12: if value > alpha and value < beta then

13: value ← −Negascout(new node,−beta,−alpha − 1)

14: if value ≥ beta then

15: return beta

16: if value > alpha then

17: alpha ← value

18: return alpha

Figure 2.12: The negascout algorithm.
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1: node ← Root

2: V ← initial estimate

3: for d ← 1 to depth

4: node.depth ← d

5: alpha ← V − e

6: beta ← V + e

7: score = AlphaBeta(node, alpha, beta)

8: if score = beta then

9: score = AlphaBeta(node, beta,+∞)

10: elsif score = alpha then

11: score = AlphaBeta(node,−∞, alpha)

12: V ← score

Figure 2.13: An iteratively deepening alpha-beta search that uses the game tree value from the

previous iteration in an aspiration search of the current iteration.

sharing:

• The principal variation from the previous iteration is usually a good indicator of what

the principal variation from the current iteration will look like. Search efficiency usually

improves if the branches from the last principal variation are expanded first.

• The game tree value from the last iteration is a good estimate of what the game tree

value will be at the end of the current iteration. Therefore, the game tree value from

the previous iteration can be used to guide an aspiration search of the tree to the depth

required by the current iteration.

Figure 2.13 combines iterative deepening with aspiration search. Aspiration search uses

a small window centered around the game tree value from the preceding iteration for the

search during the current iteration.

• The previous iteration may have retained quality information about certain key branches

in the tree. The nature of this information is usually application dependent. This infor-

mation is then used by the current iteration to determine the ordering of the branches at

a node so that good branches will be expanded first.



Chapter 3

Parallel Alpha-Beta Search

3.1 Introduction

Parallelization of the alpha-beta algorithm and its variants has proven to be difficult. The

overheads in a parallel implementation of the algorithm can be classified into three categories

[21]:

• Communication overhead

• Synchronization overhead

• Search overhead

First, consider the communication overhead. Communication between processors is normal

in any parallel algorithm; however, there is one type of communication that is unique to parallel

alpha-beta. The sequential alpha-beta algorithm updates its two bounds, alpha and beta, as

the search of a game tree progresses. When searching in parallel, if one processor finds an

improvement to alpha or beta, it informs the other processors working below that node so that

they can make use of the tighter bound that was just discovered.

Synchronization overhead results when a processor sits idle while waiting for some event to

occur. For example, if four processors, P1, P2, P3 and P4, are working together at a node,

processors P2, P3 and P4 may be waiting for the result of a search being conducted by processor

P1 on some branch at that node.

Search overhead is a consequence of the parallel alpha-beta algorithm examining nodes that

would have been avoided by the sequential version. When parallel search is initiated at a node,

the best score might not have been discovered as yet. As a result, parallel search is conducted

with a wider window than in the sequential case. Furthermore, after parallel search has been

initiated, one processor may discover that search is no longer necessary at the node due to a

cut-off condition — the other processors have essentially performed useless work.

19
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The three overheads are not independent of each other; they are related in a complex

manner. Let us consider a few examples of this complex relationship. To reduce search overhead,

the processors may continuously update each other with the latest search information thereby

increasing communication overhead. In another strategy to reduce search overhead, we may

require that a certain number of branches be explored in a sequential fashion before attempting

parallel search at a node. When the parallel search is actually started, it is highly likely

that the score at the node will have stabilized. Communication overhead is also reduced as

messages carrying bound information will be less frequent. However, synchronization overhead

will increase since there will be several processors waiting idly while a single processor completes

the required number of branches.

In this chapter, important work in the area of alpha-beta parallelization is presented. While

the literature describes several methods [1], only three are described here. These three methods

have been chosen carefully from the several that are available. The first method, principal

variation splitting (PVSplit) [16], is the result of some of the earliest attempts at parallelizing

alpha-beta. Although it is a relatively old idea, PVSplit has been the subject of much research

and it has been the source of inspiration for several newer methods. The other two methods,

young brothers wait concept (YBWC) [6] and dynamic tree splitting (DTS) [9], are more recent

and spectacular speed-ups have been reported. These two methods embody two different design

goals: YBWC was developed in a distributed environment where communication costs are high,

whereas DTS was developed in an environment where communication is quite cheap.

3.2 Super-Linear Speed-Up?

Although it rarely ever happens in practice, parallel alpha-beta may yield super-linear speed-

ups. Consider the tree of Figure 3.1. It is assumed that this tree is part of a much bigger tree.

When the search arrives at the Root node, alpha has a value of −5 and beta has a value of

0.1 It is assumed that each major operation in alpha-beta can be completed in one time unit.

Table 3.1 illustrates the progress of a single processor executing the alpha-beta algorithm on

the tree. It takes 25 time units to complete the search. Now, consider the situation where two

processors, P1 and P2, are working together at the Root node. The first processor handles the

subtree rooted at node A while the second handles the subtree rooted at node B. The progress

of processors P1 and P2 is illustrated in Tables 3.2 and 3.3 respectively. Since move ordering is

bad within the subtree rooted at A, all nodes will have to be explored. However, there is perfect

ordering in the subtree rooted at B and cut-offs are plentiful. The second processor completes

its search in a short period of time and it discovers that a cut-off condition exists at the Root.

1This discussion uses mini-max conventions as opposed to nega-max conventions.
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Figure 3.1: Parallel search on this tree yields super-linear speed-ups.

Processor 1 is then stopped and the search of the Root node is complete. With two processors,

the search takes a mere 11 time units. Clearly, super-linear speed-up is a possibility, but the

rather contrived nature of the tree in Figure 3.1 and the bounds used should be indicative of

the fact that super-linear speed-up rarely occurs in practice.

3.3 Principal Variation Splitting

In PVSplit [16], the rule is that the first branch at a PV node must be searched before parallel

search of the remaining branches may begin. All processors travel down the first branch at

each PV node until they reach the PV node that is one level above the leaf nodes. Here one

processor searches the first branch while the other processors wait. Once the first branch has

been examined, all processors join the search effort. Each processor takes away a branch at

a time and determines its value. If a processor discovers an improvement to the score at the

node, it informs the other processors of the updated value. When there aren’t any unassigned

branches, a processor that runs out of work remains idle until the other processors finish. Once

all branches have been examined, the search effort moves the current node’s parent. Since the

value of the parent node’s first branch was just computed, parallel search can be started at the

parent as well. This process continues upwards in the tree until all the branches at the Root

node have been examined.

Figure 3.2 illustrates the progress of two processors, P1 and P2, as they use PVSplit on a

small tree. Both processors travel down the leftmost path until they reach node D. At this node,

P2 remains idle while P1 explores branch g. Once the exploration of g is complete, parallel

search is started; P1 explores h while P2 explores i. When D has been completely evaluated,
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Time Node Alpha Beta Score Action

0 Root −5 0 −5 Explore a

1 A −5 0 0 Explore c

2 C −5 0 −5 Explore g

3 G −5 0 −2 Return −2

4 C −5 0 −2 Explore h

5 H −2 0 −1 Return −1

6 C −5 0 −1 Return −1

7 A −5 0 −1 Explore d

8 D −5 −1 −5 Explore i

9 I −5 −1 −4 Return −4

10 D −5 −1 −4 Explore j

11 J −4 −1 −3 Return −3

12 D −5 −1 −3 Return −3

13 A −5 0 −3 Return −3

14 Root −5 0 −3 Explore b

15 B −3 0 0 Explore e

16 E −3 0 −3 Explore k

17 K −3 0 2 Return 2

18 E −3 0 −3 Cut-off

19 B −3 0 0 Explore f

20 F −3 0 −3 Explore m

21 M −3 0 4 Return 4

22 F −3 0 −3 Cut-off

23 B −3 0 0 Return 0

24 Root −5 0 −3 Cut-off

Table 3.1: Progress of the alpha-beta algorithm on the tree of Figure 3.1.
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Time Node Alpha Beta Score Action

0 Root −5 0 −5 Explore a

1 A −5 0 0 Explore c

2 C −5 0 −5 Explore g

3 G −5 0 −2 Return −2

4 C −5 0 −2 Explore h

5 H −2 0 −1 Return −1

6 C −5 0 −1 Return −1

7 A −5 0 −1 Explore d

8 D −5 −1 −5 Explore i

9 I −5 −1 −4 Return −4

10 D −5 −1 −4 Explore j

Table 3.2: Progress of P1 on the tree of Figure 3.1.

Time Node Alpha Beta Score Action

0 Root −5 0 −5 Explore b

1 B −5 0 0 Explore e

2 E −5 0 −5 Explore k

3 K −5 0 2 Return 2

4 E −5 0 −5 Cut-off

5 B −5 0 0 Explore f

6 F −5 0 −5 Explore m

7 M −5 0 4 Return 4

8 F −5 0 −5 Cut-off

9 B −5 0 0 Return 0

10 Root −5 0 −5 Cut-off

Table 3.3: Progress of P2 on the tree of Figure 3.1.
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Figure 3.2: Two processors using PVSplit to divide up the work in a small tree.

the search moves to its parent, A. Since the eldest brother, d, has been examined at A, parallel

search can be employed once again. Processor P1 evaluates e while P2 evaluates f. Once A has

been evaluated, parallel search begins at the Root node with P1 evaluating b and P2 evaluating

c.

Let us examine some of the reasoning behind PVSplit. First, at a PV node all branches have

to be searched, thus parallel search is a good idea at this type of node. Second, by requiring that

the first branch be examined before parallel search is started at a node, parallel search starts

only when a bound has been determined. If the branches have been ordered according to some

preliminary quality information, then the score returned by the first branch may be the best

possible at that node. In fact, the original work [16] described PVSplit as a method for searching

strongly-ordered trees (refer to Section 4.3) where the first branch at any node is the best 70

percent of the time. If the best possible score is obtained when the first branch is examined,

parallel search will examine precisely the same nodes as the sequential version. Therefore, there

is no search overhead if at each PV node the first branch is also the best. Third, search at a

PV node examines more nodes than the search of any other node of equivalent height because

a PV node has no bound information — alpha and beta are at negative infinity and positive

infinity respectively. Thus, a PV node is a reasonable choice as a site for parallel search.

The PVSplit method is not without its faults. When the first branch is not the best, search

overhead increases as parallel search is conducted with a bound that is not as tight as in a

sequential search. Depending on the branching factor, the method may not be able to use a large

number of processors effectively. For example, in chess, where the average branching factor is 32,

the method does not have a mechanism for handling more than 31 processors. Synchronization

overhead is a significant problem in PVSplit. Consider what happens as parallel search at a
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Processors 1 2 4 8 16

Speed-Up 1.0 1.8 3.0 4.1 4.6

Table 3.4: Performance of PVSplit on chess trees.

Processors 1 2 4 8 16

Speed-Up 1.0 1.9 3.4 5.4 6.0

Table 3.5: Performance of EPVS on chess trees.

node nears its end. Most of the processors in the search effort will be idle waiting for a few

processors that are searching “difficult” branches. A difficult branch is one that requires a

larger search effort because more nodes are examined in the subtree generated by that branch

compared to the other branches at the node.

Experiments with PVSplit have shown that speed-up is limited to a large extent by syn-

chronization overhead [17, 21, 9]. Searching chess trees on a Cray C90, the technique produces

the speed-ups in Table 3.4 [9]. The speed-up seems to be limited to an upper bound of 5. This

has led to some interesting work that tries to reduce the synchronization overhead in PVSplit.

In enhanced principal variation splitting (EPVS) [9], when a processor becomes idle, all pro-

cessors move to the subtree being searched by one of the busy processors and a site for parallel

search is created two levels below the original site. Experiments with this method produced

the speed-ups in Table 3.5 [9]. Although this method is a little better than plain PVSplit, it is

still not very efficient when a large number of processors are involved in the search effort. In

Dynamic PVSplit (DPVS) [21], each processor runs a version of PVSplit. However, the differ-

ence is that a controller process dynamically assigns idle processors to help the busy processors

in the system. Searching chess trees, this technique obtained a speed-up of 7.64 on a network

of 19 Sun 3/75s.

3.4 Young Brothers Wait Concept (YBWC)

There are two different versions of YBWC. The earliest one is referred to as the weak YBWC [6].

A more recent version that modifies the technique slightly is referred to as the strong YBWC

[5]. Whenever a distinction needs to be made between the two versions, the qualifications weak

and strong will be used. However, if the discussion applies to both techniques, then the method

will be referred to as simply YBWC.

At any node, the first branch to be expanded is referred to as the eldest brother while the
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other branches are referred to as the younger brothers. In weak YBWC, the rule is as follows:

the eldest brother has to be examined before parallel search of the younger brothers is possible.

Although this is similar to PVSplit, in YBWC parallel search is possible at any node not just

at PV nodes.

Before delving into the method’s details, the concept of node ownership is introduced. A

processor that owns a node is responsible for its evaluation. It is also responsible for returning

the node’s evaluation to its parent. Note that this may involve communication if the owner

of the evaluated node is different from that of its parent. Usually, a node and its successors

have the same owner. However, multiple processors can collaborate on a node if some of the

successors have different owners. In YBWC, once a processor is given ownership of a node, the

ownership of that node is not transferable to another processor.

At the start, one processor is given ownership of the Root node while the other processors

remain in an idle state. A processor, P1, that is idle selects another processor, P2, at random

and transmits a message requesting work. Processor P2 has work available if there is at least

one node in the subtree it is examining that satisfies the weak YBWC criterion. That is, P2 has

work available if it owns a node at which the eldest brother has been evaluated. The node that

satisfies the criterion becomes the split-point ; if there are many nodes that satisfy the criterion,

then the node that is the highest in the tree is selected as the split-point. A split-point is a

node that has been chosen as a site for parallel search.

If P2 has work available then a master-slave relationship is established between P2 and P1.

Note that P1 may be one of many slaves to P2. The master and its slaves share the search

effort at the split-point. Each processor takes away a branch at a time until the search at the

split-point is complete. As in PVSplit, if one processor finds an improvement to the score at

the split-point then the new score is transmitted to the other processors involved. A processor

may also discover a cut-off condition at the split-point. In this case, the search is complete and

the slaves return to their idle state. A slave may also return to its idle state if there isn’t any

work left at the split-point. If the master returns from the search of some branch to find no

work at the split-point, it should not remain idle while waiting for the busy processors to finish

because this would increase synchronization overhead. Instead, the master acts as a slave to

one of the busy processors. This is referred to as the helpful master concept.

When an idle processor P1 transmits a message requesting work to a processor P2, the

latter may not have any work available. Processor P2 forwards the request message to another

randomly selected processor. However, if the message has already traveled through a certain

number of processors, P2 throws away the message and informs P1 that no work is available.

Processor P1 then begins requesting again.

In strong YBWC, the nodes of a game tree are classified into three types:
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• Y-PV : The root node is of type Y-PV. The first successor at a Y-PV node is of type

Y-PV while the rest of the successors are Y-CUT.

• Y-CUT : The first successor is a Y-ALL node while the rest are Y-CUT nodes.

• Y-ALL: All successors are Y-CUT nodes.

Note that the definition of a Y-PV node is the same as that of a PV node except that it produces

Y-PV and Y-CUT nodes as successors. Furthermore, a Y-ALL node is similar to an ALL node

except that it produces Y-CUT nodes as successors. However, a Y-CUT node is quite different

compared to a CUT node. Recall that a CUT node is defined as having only one successor

and that the lone successor is of type ALL. While that definition is suitable for a tree that is

perfectly ordered, when a tree is imperfectly ordered, a CUT node may have more than one

successor. The new node classification specifies that these additional successors at CUT nodes

are of type Y-CUT.

Strong YBWC uses the weak YBWC criterion at Y-PV and Y-ALL nodes. However, at Y-

CUT nodes, strong YBWC enforces a different rule: all “promising” branches must be examined

before parallel search is possible. A promising branch is one that is likely to produce a cut-off

based on some preliminary quality information. The exact definition of a promising branch is

application dependent. In strong YBWC there is a longer wait at CUT nodes before parallel

search is possible. Although this reduces the potential parallelism, the search overhead is greatly

reduced and in practice, strong YBWC produces better speed-ups than weak YBWC.

On a Parsytec SC 320 machine (based on the T800 Transputer), weak YBWC obtained a

speed-up of 137 when searching chess trees with 256 processors [5]. Strong YBWC obtained

a speed-up of 142 on the same system. Experiments were also conducted on a Parsytec GCel

machine (based on the T805 Transputer) with 1024 processors. With 1024 processors, strong

YBWC produced a speed-up of 344.

3.5 Dynamic Tree Splitting (DTS)

DTS [8, 9] uses a peer-to-peer approach rather than a master-slave approach as in YBWC.

Node ownership takes on a different meaning in DTS. While many processors may collaborate

on a node, the processor that finishes its search last is responsible for returning the node’s

evaluation to its parent.

At the start, one processor is set to search the Root node while the other processors are in

an idle state. An idle processor consults a global list of active split-points (SP-LIST) to find

work to do. If a split-point with work is found, the idle processor joins the other processors that

are working at that split-point and the work at that node is shared. However, if no work can be
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found in SP-LIST, the idle processor broadcasts a HELP message to all processors. On receipt

of the HELP message, a processor that is busy copies the state of the subtree it is examining to

a shared area. The idle processor then examines the shared area to find a suitable split-point.

If a split-point can be found, the split-point is first copied into SP-LIST and the idle processor

then shares the work at the split-point with the processor that originally expanded the node.

If a suitable split-point cannot be found in the shared area, the idle processor rebroadcasts the

HELP message after a small delay.

When a processor returns from the search of some branch to find no work at a split-point, the

processor simply enters the idle state where it can try to find work at another node. However, if

a processor returning from the search is the last processor at the split-point, then the processor

is responsible for returning the node’s evaluation to its parent. Furthermore, this processor

does not enter the idle state but continues working at the parent node.

Similar to PVSplit and YBWC, if one processor discovers an improved score, the score is

shared with the other processors working at the split-point. Instead of an improved score, if a

cut-off condition is discovered, a single processor is left at the node as its owner while the other

processors return to their idle states.

Finding a suitable split-point after having broadcast the HELP command is rather compli-

cated. The selection procedure is not as simple as the one found in YBWC. First, the type of

each node is determined. The set of rules that is used to determine node type in DTS is quite

different from YBWC, therefore different names are used to avoid any confusion. A node is

classified into three types:

• D-PV : A node that has the same alpha and beta values as the Root.

• D-CUT : A minimizing node with the same beta as the Root or a maximizing node with

the same alpha as the Root.

• D-ALL: Any node that does not fit the D-PV and D-CUT criteria.

The types, D-PV and D-CUT, are equivalent to the normal types, PV and CUT, respectively.

However, the D-ALL node is much broader in scope than the ALL type. Although every ALL

node is also a D-ALL node, the D-ALL type also encompasses those nodes that are searched

due to imperfect ordering. After determining the node type, there are two override phases.

During the first override phase, a node’s type is changed from D-CUT into D-ALL if more than

three nodes have been examined at the node without having achieved a cut-off. The second

override phase deals with the situation where there are several D-ALL nodes at consecutive

levels in the tree. DTS only allows two D-ALL nodes to be consecutive in the tree. Following

the second D-ALL node, nodes are forced into an alternating sequence of D-CUT and D-ALL
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Processors 1 2 4 8 16

Speed-Up 1.0 2.0 3.7 6.6 11.1

Table 3.6: Performance of DTS on chess trees.

nodes. There is also a confidence factor associated with each D-CUT and D-ALL node. If many

moves (up to a limit of three) have been searched at a D-CUT node, then the confidence that

it is a D-CUT node is lowered. If several moves have been searched at a D-ALL node, then the

confidence that it is a D-ALL node increases. A node’s suitability as a split-point is based on

four factors:

• The node must be of type D-PV or D-ALL.

• The height of the node. Nodes that are higher up in the tree (closer to the root) represent

more work.

• If it is a D-PV node, its first branch must have been searched.

• If it is a D-ALL node, the confidence factor should be relatively high.

The process of selecting a split-point is quite complicated but all this effort is in an attempt to

reduce the search overhead.

Searching chess trees on a Cray C916/1024 machine, DTS produced the speed-ups in Ta-

ble 3.6 [9]. Since DTS was designed with shared memory in mind, experiments with a large

number of processors are not available as shared memory multiprocessors are hard to find in

large configurations.
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Artificial Game Trees

4.1 Introduction

Although a wide variety of game trees arise in practice, as far as the alpha-beta algorithm

is concerned, a tree’s average branching factor and the quality of its branch ordering usually

governs the length of time spent searching the tree. Searching artificially generated trees allows

one to examine the algorithm’s behavior for a wide variety of branching factors and branch

orderings. When artificial trees are used as a model for the trees encountered in practice, they

should mimic the behavior exhibited by real trees. This chapter introduces the notion of an

exponentially ordered tree. A method for generating such trees is also described.

4.2 Generating Artificial Trees

Any method used in artificial tree generation should satisfy three requirements. First, the

method must be able to generate a wide variety of trees. Second, when identical input param-

eters are used, identical trees should be produced. This is particularly important because the

artificial trees are used to compare different techniques and identical trees must be presented

to each technique. Third, the order of branch expansion should not affect the tree generated.

In sequential search this requirement has no effect, but in parallel search the order of branch

expansion is usually dependent on the parallel search method. The method described below

satisfies all three requirements.

Three routines used for random number generation in the artificial tree generator are exam-

ined first before a treatment of the method itself. Figure 4.1 shows these three routines. The

Random function is the main random number generator. It is of the linear congruential type.

The RandomSeed function is used to seed the main generator. In reality, this is also another

linear congruential generator. Normally, it would have been sufficient to simply copy the seed

30
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1: constant random limit ← 2147483647

RandomSeed(rnd , seed)

2: rnd .state ← (16807 · seed) mod random limit

Random(rnd)

3: rnd .state ← (48271 · rnd .state) mod random limit

4: return rnd .state

RandomRange(rnd , lower , upper)

5: return Random(rnd) · (upper − lower + 1)/random limit + lower

Figure 4.1: Random number routines used by the artificial tree generator.

into the generator’s state variable. Furthermore, if the seeding function had to use a multiplier,

it could have used the same multiplier as the main generator. However, a standard seeding

function is not adequate for the artificial tree generator because it uses multiple random num-

ber streams and each stream is initialized using a seed generated by another stream. If either no

multiplier or the same multiplier was used, then the same sequence of random numbers would

be generated by a stream and the stream that produced its seed. The random tree method [4],

which is used for parallel random number generation, provides the necessary insight to solve the

problem of similar sequences — a second linear congruential generator can be used to separate

the two sequences so that they appear different. Additionally, note that the multipliers used,

16807 and 48271, and the modulus, 2147483647, are known to have good randomness properties

[11]. The RandomRange function is an extension of Random to provide random numbers

in a certain range, [lower , upper ]. It simply scales and shifts a random number generated by

Random into the appropriate range before returning the result.

Virtually all of the tasks carried out by the artificial tree generator can be combined into

a single routine. This routine will be referred to as BranchGenerate and is presented in

Figure 4.2. Every internal node invokes BranchGenerate to generate its successors. The

generation of successors at each node is controlled by two variables, seed and pscore. Both of

these variables are set by a node’s parent. The generation of successors is as follows. First,
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a new stream of random numbers is initialized using seed (lines 1 – 2). Each successor needs

values for its seed and pscore variables. It also needs values for its depth (which represents

the height of the tree at the node) and type (maximizing or minimizing) variables. Strictly

speaking, depth and type are not related to artificial tree generation — they are integral to

any tree expansion routine, artificial or not. Each successor’s seed is generated by a call to

Random (line 17). Determining a value for a successor’s pscore is more involved. A node’s

pscore value represents the score that is obtained when the results returned by the successors

are maximized or minimized as required at the node. The pscore for the first successor is set

equal to the node’s pscore. The smallest and largest score that can be generated is held in the

constants, score min and score max , respectively. If a node is of the maximizing type, then

the value of the pscore variable for each of the remaining successors is obtained by generating

random numbers in the range [score min, pscore] (line 10). However, if the node is of the

minimizing type, then random numbers in the range, [pscore, score max ], are used instead (line

14). Consider what has been accomplished so far. The best score at a node is always in its

first position. If the node being expanded is of the maximizing type, the remaining successors

will all have scores that are smaller than or equal to the first successor. If the node is of the

minimizing type, the remaining successors will have scores that are greater than or equal to

the first successor. This essentially produces a perfectly ordered tree. However, the ordering

produced by the artificial tree generator is of no concern since the BranchGenerate routine

will be followed by a BranchOrder routine whose sole purpose is to order the successors in

a more realistic manner.

In Figure 4.3, the artificial tree generator has been incorporated into an AlphaBeta search

routine. At a leaf node, the value of pscore is returned as the node’s score. At all other

nodes, BranchGenerate is called to generate the node’s successors. Once the execution of

BranchGenerate is complete, BranchOrder is called to order the successors. A possible

BranchOrder routine is described in Section 4.3.3.

Note that the entire tree is dependent on only two values: the Root node’s seed and

pscore. In the experiments conducted, different seeds are used to generate different trees,

however, the pscore value is fixed. The value of the pscore variable is fixed to the value

(score max − score min)/2. If the Root node’s pscore is too low, then the range used at the

root, [score min, pscore], will be too small. Similarly, if the value of pscore is too high, then

the first successor’s range, [pscore, score max ], will be too small. Therefore, a value for pscore

somewhere in the middle of the range of scores that are possible offers the greatest flexibility.

In the experiments described in this text, two sets of seeds are used to generate artificial trees.

The sets will be referred to as tg1 and tg2. The first set, tg1, contains 100 seeds while the

second set, tg2, contains 200 seeds. Both sets are described in Appendix 1.
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1: score min ← 0

2: score max ← random limit − 1

BranchGenerate(node)

3: node.rnd ← new random type

4: RandomSeed(node.rnd ,node.seed)

5: for i ← 1 to node.child .length

6: node.child [i ] ← new node type

7: if i = 1 then

8: node.child [i ].pscore ← node.pscore

9: if node.type = max then

10: node.child [i ].type ← min

11: if i 6= 1 then

12: node.child [i ].pscore ← RandomRange(node.rnd , score min,node.pscore)

13: else

14: node.child [i ].type ← max

15: if i 6= 1 then

16: node.child [i ].pscore ← RandomRange(node.rnd ,node.pscore, score max )

17: node.child [i ].depth ← node.depth − 1

18: node.child [i ].seed ← Random(node.rnd)

Figure 4.2: Generation of successors using the artificial tree generator.
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AlphaBeta(node, alpha, beta)

1: if node.depth = 0 then

2: return node.pscore

3: BranchGenerate(node)

4: BranchOrder(node)

5: if node.type = max then

6: score ← alpha

7: else

8: score ← beta

9: for i ← 1 to node.child .length

10: if node.type = max then

11: value ← AlphaBeta(node.child [i ], score, beta)

12: if value ≥ beta then

13: return beta

14: if value > score then

15: score ← value

16: else

17: value ← AlphaBeta(node.child [i ], alpha, score)

18: if value ≤ alpha then

19: return alpha

20: if value < score then

21: score ← value

22: return score

Figure 4.3: Incorporating the artificial tree generator into an alpha-beta search procedure.
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4.3 Modeling Branch Ordering

To mimic the branch orderings observed in practice, Marsland and Campbell [16] propose the

model of a strongly ordered tree where the branches are ordered according to two rules:

• The first branch at any node is the best 70 percent of the time.

• There is a 90 percent chance that the branch with the best score is located within the

first quarter of the branches at a node.

In [18], to generate a strongly ordered tree with a branching factor of 20, each branch is given

a weight:

w1 = 70, w2 = 5, w3 = 5, w4 = 5, w5 = 5, w6 =
2
3
, . . . , w20 =

2
3

Each weight represents the probability of that move being chosen as the best at that node.

Experiments with the author’s chess program, RajahX [14], indicate that the model of

a strongly ordered tree is not an accurate representation of the branch orderings observed

in practice. A new model, the exponentially ordered model is introduced to overcome the

deficiencies in the strongly ordered model. If necessary, the exponential model can be adjusted

so that it satisfies the criteria of the strongly ordered model.

4.3.1 A Description of RajahX

Experience with RajahX has shown that the program is quite a strong chess player. It has

competed successfully in two tournaments. At the 1996 Dutch Computer Chess Championships

the program placed 13th in a field of 20 participants. After several modifications to the program,

at the 1997 Aegon Man-Machine tournament the program finished 17th in a field of 100. Playing

on a Pentium 166, the program’s blitz rating hovers around the 2500 mark on the Internet Chess

Club.

RajahX uses a negascout search routine with numerous enhancements. At a leaf node, a

quiescence search routine is used to refine the node before it is evaluated. The structure of the

tree generated by the program is not uniform. Variations with moves that seem “interesting”

are searched more deeply in order to uncover any gains or losses that are outside the normal

search depth. The program uses several methods to improve the efficiency of its search routine:

• Iterative deepening.

• Aspiration search.
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• Killer table [16, 15]: A move that is found to produce a cut-off is stored in a killer table.

If the move comes up again in another part of the tree, it should be placed near the front

of the move list since it is likely to produce a cut-off again.

• History list [15]: A history list contains 4096 entries (64 × 64). It contains an entry for

each (from square, to square) pair in chess. The entry indicates how often a move from

one square to another is the best or is able to produce a cut-off at a node. This table is

maintained as the search progresses and is used to order the branches at every node in

the tree.

• Transposition table [16, 15]: The score determined for each position encountered during

the search can be stored in a hash table that is accessed using a key generated from that

board position. If the position arises again through a different sequence of moves, the

table can immediately provide a score for the position and search is completely avoided.

• Null move search [3]: In chess, a “pass” is not a legal move. However, if such a move

was legal, in most positions, the player on move would not pass since the other player

could potentially improve his position greatly. This observation can be used during the

search as follows. At a node in the tree, if the player on move makes a pass and the

resulting score is higher than the upper bound then making a non-pass move would result

in a significantly higher score. Therefore, when the score for a pass type move is higher

than the upper bound, the node can be cut-off right away since it is likely to contribute

nothing to the overall search effort.

RajahX also implements a simple learning method [23]. Positions that are found to be prob-

lematic for the program are stored in a table and the program “learns” to avoid these positions

when they arise again during tree search.

4.3.2 Quality of Branch Ordering in RajahX

To measure the quality of the first branch expanded at each node, a method suggested in [10]

measures the frequency with which the first branch is the best or is able to produce a cut-off.

This frequency is referred to as fbest . The method assumes that the branch that causes the

cut-off is also the best. This assumption produces a highly optimistic estimate of the quality of

branch ordering because a branch that produces a cut-off at a node is not necessarily the node’s

best. There is a large degree of uncertainty in the ranking of the cut-off branch among the other

branches at the node, because an exact score is unavailable for that branch and several branches

may be unexplored when the cut-off occurs. However, fbest still provides useful information
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about the tree structure. Specifically, fbest can be used as a criterion for comparing the trees

produced by RajahX with the trees produced by the artificial tree generator.

To compute the value of fbest for RajahX, a minor program modification was necessary.

The negascout search algorithm is replaced by the simpler alpha-beta algorithm. Most of the

time, the negascout algorithm searches with a null window. Cut-offs are more frequent in a null

window search and the greater frequency of cut-offs will skew the value of fbest even further.

Statistics are collected while RajahX conducts searches on the Bratko-Kopec set of 24 test

positions [13]. The program is asked to search each position for 10 seconds. Tables 4.1, 4.2

and 4.3 summarize the statistics collected. Every node in the tree does not contribute to the

computation of fbest . For example, at a maximizing node, if every branch returns a score

equal to the lower bound then it is not clear which branch is the best. Furthermore, a cut-

off never occurs at such a node. The second column in Table 4.1 gives the number of nodes

that contribute to the computation of fbest . To determine the average branching factor, the

number of pseudo-legal moves at every node that contributes to fbest is totaled. For efficiency

reasons, most chess programs generate pseudo-legal moves. The set of moves generated is

described as being pseudo-legal since the set may include illegal moves which leave the king

in check. Moves that are illegal are detected and removed during the search process. The

number of pseudo-legal moves is a good estimate of the average branching factor since illegal

moves are not generated for most positions. However, this estimate is slightly higher than the

real branching factor due to the inclusion of the illegal moves. The third column in Table 4.1

indicates the total number of pseudo-legal moves for each test position. Using the data in the

second and third columns, the average branching factor is determined to be approximately 32.

An expanded version of the original method in [10] was implemented to obtain a more detailed

view of the tree structure. The expanded version calculates the frequency with which a move

in one of the first 10 positions is the best or is able to produce a cut-off. This produces a set of

frequencies: fbest(1), fbest(2), . . . , fbest(10). Table 4.2 presents the first five values of fbest and

Table 4.3 presents the last five. The term, pbest(n), refers to the probability with which a move

in a position, n, is the best and is obtained by dividing fbest(n) by the number of nodes that

contributed to fbest(n) (Table 4.1).

For the trees searched by RajahX, the first branch has a very high probability (pbest(1) =

0.878521) of being the best or being able to produce a cut-off. On a perfectly ordered game tree

pbest(1) = 100. The branch ordering techniques used by RajahX help it achieve something quite

close to a perfectly ordered tree. In the next section, the challenge is to reproduce the behavior

observed in RajahX using artificially generated trees. If the artificially generated trees are to

be used as a model of the trees encountered in practice they should produce similar values for

pbest(1), pbest(2), . . . , pbest(10).
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Position Nodes Where Pseudo-Legal

Statistic is Valid Moves

1 237 10427

2 76567 2212805

3 48817 1658962

4 80879 2435516

5 72022 2949829

6 353732 6885046

7 69248 2561168

8 231888 4255581

9 62636 2389516

10 83923 3187410

11 55373 2211242

12 97282 3935812

13 70682 2780559

14 79563 3017889

15 119038 4110521

16 81574 2944782

17 53895 2032046

18 57534 2452978

19 81410 3295496

20 96656 3421319

21 77374 2714680

22 46893 1849020

23 69700 2757646

24 23204 944301

Total 2090127 67014551

Average

Branching 67014551
2090127 = 32.06243

Factor

Table 4.1: A count of the nodes that contribute to fbest and average branching factor in the

Bratko-Kopec test positions.
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Frequency With Which

Move is Best or

Produces a Cut-off

Position fbest(1) fbest(2) fbest(3) fbest(4) fbest(5)

1 206 10 9 5 1

2 63684 5366 3172 1388 757

3 42317 1811 1503 1285 554

4 67370 6305 2964 1370 771

5 62754 3324 2057 1209 634

6 335578 10165 3273 1113 658

7 60394 3029 1869 1165 946

8 205706 12945 4276 2331 2060

9 50785 4413 3051 1369 935

10 75596 3594 1481 985 659

11 46712 1898 1282 1660 1282

12 84100 4589 2007 1427 1197

13 56714 5664 2977 1615 990

14 66364 4673 2469 2032 1413

15 109542 4389 1892 937 508

16 69683 5139 1635 1312 1427

17 45531 2727 1991 1081 809

18 48190 3249 1406 1135 998

19 71547 3397 2003 1267 804

20 80469 4517 2670 2869 1834

21 71920 1892 786 877 581

22 42647 1854 739 478 297

23 58615 3478 2222 1961 1061

24 19796 1556 769 390 162

Total 1836220 99984 48503 31261 21338

pbest(n) 0.878521 0.047836 0.023206 0.014957 0.010209

Table 4.2: The first five values of fbest derived from the search of the Bratko-Kopec test posi-

tions.
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Frequency With Which

Move is Best or

Produces a Cut-off

Position fbest(6) fbest(7) fbest(8) fbest(9) fbest(10)

1 0 1 0 0 0

2 402 211 230 177 170

3 289 240 111 110 90

4 450 343 222 151 134

5 553 274 164 128 98

6 637 552 445 365 278

7 635 321 163 143 74

8 1155 763 614 509 417

9 560 334 230 176 159

10 313 198 115 108 109

11 777 440 286 169 138

12 941 588 335 214 154

13 520 335 275 228 167

14 750 317 239 172 132

15 272 245 193 145 96

16 792 375 230 155 157

17 594 300 168 106 88

18 512 354 263 216 223

19 623 280 187 189 142

20 1272 673 460 309 280

21 392 203 92 88 72

22 205 98 78 40 32

23 464 277 187 152 135

24 146 62 51 27 29

Total 13254 7784 5338 4077 3374

pbest(n) 0.006341 0.003724 0.002554 0.001951 0.001614

Table 4.3: The last five values of fbest derived from the search of the Bratko-Kopec test positions.
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4.3.3 An Exponential Branch Ordering Model

Imagine a function whose sole purpose is to order the branches at a node in a best to worst

order. Although such perfect ordering is impossible, the function makes an educated attempt

at creating a best to worst order. There are two branch lists; one is unordered and the other is

ordered. Initially, the unordered list is full and has b (branching factor) members. The ordered

list is empty. Until the unordered list is empty, the function moves branches, one at a time, from

the unordered list into the ordered list. Branches must be carefully selected from the unordered

list since they are being moved into an ordered list. To aid the selection process, the function

uses domain dependent knowledge to predict which of the remaining moves in the unordered

list is the best. In the exponential branch ordering model, two weights, wa and wb , represent

the effect of the domain dependent knowledge on the resultant ordering. When selecting the

first move, the knowledge assisted selection mechanism is successful in picking the best move

with a probability of wa/100. For all other moves, the knowledge assisted selection mechanism

is successful in picking the best remaining move from the unordered list with a probability of

wb/100. When the domain dependent knowledge is not good enough to select the next best

move, the probability that the move picked is still the best is given by: 1/(b− n + 1). This is

the probability when a simple random pick is used to select the nth branch. The routine in

Figure 4.4 produces an exponential branch ordering. Both the ordered and unordered list are

stored within the node.child array. When selecting the first move, the ordered list is empty

and the entire array stores the elements of the unordered list. When selecting branch n, the

elements in the range [1, n− 1] are members of the ordered list and elements in the range [n, b]

are members of the unordered list.

An exponential branch ordering has the following properties:

• The ordering generated is controlled by three parameters: b, wa and wb . Parameter,

b, represents the branching factor. Parameters, wa and wb , represent the effect of the

knowledge component in the ordering function and are values in the range [0, 100]. In

Figure 4.4, the code in the first path (lines 8 – 19) selects the branch with the best score

among the remaining branches, while the second path (line 21) selects one of the remaining

branches at random. The selected branch is then placed in position i . Parameters, wa

and wb , are used to determine which of the two paths is taken.

• The first branch at a node is best with probability, p1, given by:

p1 =
wa

100
+

(
1− wa

100

)
1
b

(4.1)

• A branch at position n, where 2 ≤ n ≤ b, is best with probability, pn, given by:

pn =
(

1− wa

100

) (
1− wb

100

)n−2 1
b

(
(b− n + 1)wb

100
+

(
1− wb

100

))
(4.2)
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Branch Branch is Best or

Position Produces a Cut-off

fbest(n) pbest(n)

1 14732328 0.873821

2 893225 0.052980

3 416419 0.024699

4 249527 0.014800

5 154453 0.009161

6 86787 0.005148

7 60687 0.003600

8 48289 0.002864

9 29638 0.001758

10 26563 0.001576

Table 4.4: Values of fbest and pbest derived from the search of 100 artificially generated trees.

We now address the question of whether an exponentially ordered model is an adequate rep-

resentation of the trees encountered in practice. In other words, can an exponentially ordered

tree produce the same values for fbest and pbest as the trees searched by RajahX? Table 4.4

illustrates the values of fbest and pbest collected during an alpha-beta search of 100 artificially

generated trees (generated using set tg1). Each tree was searched to a depth of 7. The exponen-

tial ordering employed by the artificial tree generator used the parameters: b = 32, wa = 79 and

wb = 5. Figure 4.5 compares the probability curve produced by RajahX (generated using Tables

4.2 and 4.3) with the probability curve produced by the artificial tree generator. Clearly, when

the appropriate parameters are used, the trees produced by an exponential ordering closely

resemble the trees searched by RajahX.

The exponential model can satisfy the strongly ordered model’s criteria when supplied with

the right parameters. A strongly ordered tree with a branching factor of 20 is produced when

the parameters, b = 20, wa = 69 and wb = 19, are used. The data in Table 4.5 was generated

using these parameters. The second column is the result of applying Equations 4.1 and 4.2 for

various values of n; this column presents the probability with which a move in a position, n, is

the best. A running total of the probabilities in the second column is maintained in the third

column; this column presents the probability with which a move in one of the first n positions

is the best. The probability of the first move being the best is 0.705500. This is slightly higher

than the 0.70 required by the strongly ordered model. The best branch is within the first

quarter of the branches at a node with a probability of 0.899916. This figure is slightly lower
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BranchOrder(node)

1: for i ← 1 to node.child .length

2: if i = 1 then

3: wi ← wa

4: else

5: wi ← wb

6: w ← RandomRange(node.rnd , 0, 99)

7: if w < wi then

8: if node.type = max then

9: v ← score min − 1

10: for j ← i to node.child .length

11: if node.child [j ].pscore > v then

12: p ← j

13: v ← node.child [j ].pscore

14: else

15: v ← score max + 1

16: for j ← i to node.child .length

17: if node.child [j ].pscore < v then

18: p ← j

19: v ← node.child [j ].pscore

20: else

21: p ← RandomRange(node.rnd , i ,node.child .length)

22: swap node.child [i ].pscore ↔ node.child [p].pscore

Figure 4.4: A routine that produces an exponential branch ordering.
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Figure 4.5: Comparing the values of pbest from RajahX with the values of pbest from artificially

generated trees.
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n pn p1 + . . . + pn

1 0.705500 0.705500

2 0.068510 0.774010

3 0.053108 0.827118

4 0.041085 0.868203

5 0.031714 0.899916

6 0.024420 0.924337

7 0.018754 0.943090

8 0.014359 0.957449

9 0.010957 0.968406

10 0.008329 0.976735

11 0.006305 0.983040

12 0.004749 0.987789

13 0.003557 0.991345

14 0.002646 0.993991

15 0.001953 0.995944

16 0.001428 0.997372

17 0.001032 0.998403

18 0.000734 0.999138

19 0.000513 0.999651

20 0.000349 1.000000

Table 4.5: An exponential ordering with parameters, b = 20, wa = 69 and wb = 19.

than the required value of 0.90. Highly precise values for wa and wb can be used to produce the

exact values required by the strongly ordered model, but the routine in Figure 4.4 uses integer

arithmetic and it only accepts integral values in the range [0, 100] for wa and wb . This is only

a minor limitation and it does not have a significant impact on the performance experiments

to be described in Chapter 5 and 6.

The performance experiments in this work will consider five different branch orderings as

generated by the following parameter sets:

1. b = 32, wa = 79, wb = 5.

2. b = 20, wa = 69, wb = 19.

3. b = 32, wa = 66, wb = 66.
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Figure 4.6: The probability curves generated by the five parameter sets used in the experiments.

4. b = 32, wa = 33, wb = 33.

5. b = 32, wa = 0, wb = 0.

The first parameter set generates trees that resemble the trees searched by RajahX, while the

second generates strongly ordered trees. The last three parameter sets are designed to illustrate

the effect of decreasing branch ordering accuracy. The fifth parameter set generates trees that

are randomly ordered. Equations 4.1 and 4.2 can be used to compute the probability curves

for the five branch orderings; the resulting curves are plotted in Figure 4.6.



Chapter 5

Neural Network Based Prediction

5.1 Introduction

In a parallel alpha-beta search, a split-point must be chosen carefully if large increases in search

overhead are to be avoided. If a node that will be cut-off is selected as a split-point, useless

work will be performed when many processors collaborate on the node. On the other hand, a

node that examines all of its successors makes a perfect split-point. In addition, for efficiency

reasons, a node should be selected as a split-point only when it is reasonably certan that its

score will not change further.

Given a large set of training data, a simple feed forward neural network [7] can be taught to

approximate a wide variety of functions. For the purposes of a parallel alpha-beta searcher, a

feed-forward neural network can be taught to predict when a node’s score is going to stabilize

and whether a node is going to cut-off. A neural network that is capable of performing these

two tasks is presented here. Its application to parallel alpha-beta search is examined using both

sequential and parallel experiments.

5.2 Neural Network Inputs and Outputs

The neural network is called as a new child node is being generated. Three inputs are required

by the network:

• pv : The value of this input is 1 if the parent node is among the first nodes to be expanded

by the search (i.e. a PV node). It is 0 otherwise.

• type: This input represents the parent node’s type and it is a value in the range [0, 100].

• index : The position of the child being expanded among the other children at this node.

The network produces two outputs:

47
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• type: Represents the child node’s type and it is a value in the range [0, 100].

• wait : This output represents the number of moves that need to be searched before the

score at the child node stabilizes.

Strong YBWC (Section 3.4) classifies a node into one of three types. Furthermore, in YBWC,

given a node and its type, one can determine the type for the node’s children as well. The

network presented here performs a similar task; given the parent’s type, the network generates

the child’s type. Note that a node’s type may be one of 101 different types. This generality is

necessary to allow the neural net to discover interesting patterns in the training data.

A parallel alpha-beta searcher can wait until the number of moves specified by the output,

wait , is searched sequentially before trying parallel search. However, using the output, type,

is slightly more involved. If the value for a node’s type falls within a range of numbers that

are known to represent cut-off nodes, extra care can be used before the node is selected as a

split-point or the node can be avoided all together.

5.3 Generating Training Data

A single piece of training data (also referred to as a pattern) consists of a group of input values

and the expected output values for the given inputs. Generating training data is a three step

process. First, a basic sequential alpha-beta search is modified to generate the following data

at every node:

• (p1, p2, . . . , pn−1): Specifies the “address” of the node in the tree. Here, n is equal to the

height of the tree being searched. Each p value specifies the move that was selected at the

tree level indicated by the subscript. For example, the node labeled B in Figure 5.1 has

the address: (1, 2, 2). When addressing a node, if a particular level has not been reached

as yet, the corresponding p value is set to 0. For example, the node labeled A has the

address: (2, 1, 0).

• t: A type value associated with the node. If a cut-off occurs at the node, then its type

value is 50. If a node updates its score but does not cut-off, then its type value is 0. If a

node does not update its score and does not cut-off, then its type value is 100.

• u: The index of the move at which the final score update occurred or the index of the

move that produced a cut-off.

Values for (p1, p2, . . . , pn−1), t and u are collected as the 200 trees from set tg2 are searched

to a depth of 4. Since the data is collected by traversing several different trees, there may be
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Figure 5.1: Node addressing.

several different values of t and u for a node address (i, j, k). This problem is rectified in the

second step by computing the average value of t and u for each node address in the tree. The

third and final step defines a mapping between adjacent levels in the tree. Let us consider how

a mapping may be formed between the second and third levels in the tree. A node at the second

level of the tree has an address of the form: (i, 0, 0), i 6= 0. The average values of t and u at this

node are denoted tavg(i, 0, 0) and uavg(i, 0, 0), respectively. A node at the third level of the tree

has an address of the form: (i, j, 0), i 6= 0, j 6= 0. A mapping between a parent at the second

level and a child at the third level can be defined as follows:

(tavg(i, 0, 0), j) → (tavg(i, j, 0), uavg(i, j, 0)) (5.1)

This mapping is computed for every possible value of i and j. The same process is applied to

define a mapping between the nodes at the first and second levels and between the nodes at

the third and fourth levels.

The data generated by the three-step process just described can be used as training data for

a neural network. The task of the neural network is to discover the function that maps a pair

of values at a parent into a pair of values at the child. For additional accuracy, a boolean value,

pv , is also used as input to the function. This boolean value specifies whether the parent node

is among the first nodes to be expanded by the search. Using the notation of Section 5.2, the

task of the neural network is to discover the mapping that produces (type,wait) as an output

given (pv , type, index ) as an input.

Five sets of training data are generated, one for each of the five ordering types that are

considered in this text (see Section 4.3.3).
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5.4 Neural Network Structure and Back-Propagation

The structure of the neural network used is shown in Figure 5.2. It consists of three layers: an

input layer (i1, i2, i3, ib), a hidden layer (h1, h2, . . . , h12, hb) and an output layer (o1, o2). The

nodes, ib and hb, are bias neurons which always output 1. Except for the bias neurons and the

neurons in the input layer, the output of any other neuron is given by the following equation:

f(β) =
1

1 + e−β
(5.2)

Figure 5.3 provides a plot of f(β) for −6 ≤ β ≤ 6. If β is a large negative value, the function

returns a value very close to 0. However, if β is a large positive value, the function returns a

value close to 1. For the k-th neuron in the hidden layer, β is given by:

β = ibwhk,b +
3∑

j=1

ijwhk,j (5.3)

Similarly, the value of β for the k-th neuron in the output layer is given by:

β = hbwok,b +
12∑

j=1

hjwok,j (5.4)

A weight value, wh or wo, is associated with each input to a neuron and it is used to scale the

input before it is summed. Note that each neuron has its own set of weights — one neuron’s

set of weights is not necessarily the same as another neuron’s. The weights, whk,b and wok,b,

are used to scale the bias input.

The output of a neuron is a value between 0 and 1. In keeping with this convention, the

inputs to the neural net are scaled and shifted to fit the range [0.1, 0.9] before being placed in

the input layer. Scaled and shifted versions of pv , type and index are placed in neurons i1, i2

and i3 respectively. Similarly, the values in the output layer are scaled and shifted from the

range [0.1, 0.9] into the range required by the output variables.

To train the neural network, a set of input values is applied to the network. The network’s

outputs are compared to the expected outputs to determine the error associated with the

outputs. The error associated with the k-th output neuron is given by:

ek(p) = dk(p)− ok(p) (5.5)

Here, ok(p) represents the output of the k-th output neuron for the input pattern p and dk(p)

represents the desired output for the k-th output neuron. Error in the neural network output

can be reduced by applying the back-propagation method [7] to adjust the weights in the hidden

and output layers. The adjustment to the weights at the k-th neuron in the output layer is

given by:

∆wok,j = ηγk(p)hj(p) (5.6)
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Figure 5.2: Neural network structure.
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Figure 5.3: The threshold function used for each neuron in the neural network, f(β) = 1
1+e−β .

Here, η is the learning rate and γk(p) is given by:

γk(p) = ek(p)ok(p)(1− ok(p)) (5.7)

Similarly, the weights for the k-th neuron in the hidden layer are adjusted using:

∆whk,j = ηδk(p)ij(p) (5.8)

Although δk(p) and γk(p) play similar roles, the computation of δk(p) is more involved:

δk(p) = hk(p)(1− hk(p))
12∑

j=1

γjwoj,k (5.9)
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Ordering (b,wa ,wb) Etype Ewait

(32, 79, 5) 37.460133 0.633216

(20, 69, 19) 49.063758 0.309434

(32, 66, 66) 18.992261 0.073585

(32, 33, 33) 41.489635 0.297047

(32, 0, 0) 28.369211 4.095871

Table 5.1: Average squared error for the final neural network obtained after training.

A training iteration consists of feeding every training input to the network. Any error in the

output is used to adjust the network weights. As the iterations progress, the average squared

error in each output is measured. The average squared error for output k is given by:

Ek =
1
|P |

∑

p∈P

(dk(p)− ok(p))2

2
(5.10)

Here, P is the set of all training patterns. One neural network was created for every type of

ordering considered. Each network was trained over 10000 iterations and the learning rate, η,

was set to 0.1 during the training. Table 5.1 summarizes the average squared error for the final

network obtained after training.

5.5 Performance of Node Classification Schemes

Consider three different schemes that predict whether a node will cut-off or will examine all

its successors. The first scheme, which will be referred to as scheme A, is taken from strong

YBWC. A node in this scheme is classified as follows (Section 3.4):

• The root node is of type Y-PV. The first successor at a Y-PV node is of type Y-PV, while

the rest of the successors are Y-CUT.

• The first successor to a Y-CUT node is a Y-ALL node, while the rest are Y-CUT nodes.

• All successors at Y-ALL nodes are Y-CUT nodes.

The second scheme, scheme B, is derived from the description of the DTS algorithm (Sec-

tion 3.5):

• A node that has the same alpha and beta values as the Root is classified as D-PV.

• A minimizing node with the same beta as the Root or a maximizing node with the same

alpha as the Root is classified as D-CUT.
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• Any node that doesn’t fit the first two categories is classified as a D-ALL node.

• If more than some number of moves, n, have been searched at a D-CUT node without an

occurrence of a cut-off, then the type of the node is changed to D-ALL.

• Two D-ALL nodes are allowed at subsequent levels in the tree exactly once. Following the

two D-ALL nodes, if they exist, nodes at subsequent levels are forced into an alternating

sequence of D-CUT and D-ALL nodes.

Both scheme A and scheme B have types that correspond to the ALL and CUT types in a

perfectly ordered game tree. Although PV nodes are named differently in each scheme, a node

that would be classified as Y-PV in scheme A would be classified as D-PV in scheme B. Each

scheme considers its PV type to be the first sequence of nodes expanded.

In scheme B a node may change from being a D-CUT node to a D-ALL node. In this case,

only the initial prediction is used in determining performance. Note that when the D-CUT

node changes, it affects the classification of nodes that are below it in the tree.

The final scheme, scheme C, is an application of the neural networks that were described

in the preceding section. In this scheme, a node may be classified as being one of 101 types.

The neural network generates a type value for a child node given the parent’s type value and

the location of the child among the parent’s other children. If the type value for a node falls

within a range [50−m, 50 + m] centered around 50, the node is defined to be an N-CUT node.

If the type falls outside this range, the node is said to be an N-ALL node. If a node is among

the first nodes to be expanded by the search, the neural network output is not used and the

node is defined to be an N-PV node.

To compare the performance of schemes A, B and C, each scheme was used to categorize

the internal nodes of 100 artificially generated trees. In each tree, the first sequence of nodes

expanded (PV nodes) are not included in the performance measure because all three schemes

generate the same type for these nodes. The trees were generated using set tg1 and were

searched to a depth of 6. Tables 5.2, 5.3 and 5.4 summarize the results of the experiments.

In each table, the TrueCUT column indicates how often the prediction was correct for a CUT

type node (Y-CUT, D-CUT or N-CUT). In other words, this column indicates how often a

CUT type node was found to cut-off without having searched all of its branches. Similarly, the

TrueALL column indicates how often an ALL type node (Y-ALL, D-ALL or N-ALL) searched

all of its branches. On the other hand, the FalseCUT column indicates the number of CUT

nodes that did not cut-off and the FalseALL column indicates the number of ALL nodes that

did not search all of their branches. The Error column is obtained by summing the number of

mispredicted CUT nodes and the number of mispredicted ALL nodes. When using scheme B,

a value must be specified for parameter n. Recall that n is the number of moves after which a
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Ordering TrueCUT FalseCUT TrueALL FalseALL Error

(b,wa ,wb)

32, 79, 5 5224782 96205 384361 38844 135049

20, 69, 19 1466634 51794 153707 21592 73386

32, 66, 66 5263594 104381 333611 45230 149611

32, 33, 33 8066731 374809 487466 190667 565476

32, 0, 0 21170883 2346414 971304 1256668 3603082

Table 5.2: Performance of Scheme A.

D-CUT node changes into a D-ALL node. The second column in Table 5.3 specifies the value

of n that was found to give the lowest prediction error for a given ordering. As in scheme B,

scheme C requires a value for parameter m. Recall that this parameter defines a range of type

values [50−m, 50+m] that are used to check if a node is of the CUT type. The second column

in Table 5.4 specifies the value of m that was found to give the lowest prediction error.

The lowest error, regardless of branch ordering, is exhibited by scheme C. Scheme A, which

is based on strong YBWC, has the next highest error. The worst performance is exhibited by

scheme B. Scheme B obtains its best results with n = 1. When n = 1, scheme B employs a

rule that is quite similar to a rule used by scheme A. With n = 1, when one successor has been

examined at a D-CUT node without an occurrence of a cut-off, the node’s type is changed to

D-ALL. A successor to this new D-ALL node will be of the D-CUT type if the rule regarding

two consecutive D-ALL nodes is used. Note the similarity between this and scheme A’s rule for

Y-CUT nodes. In scheme A, the first successor to a Y-CUT node is of type Y-ALL while the

rest are of type Y-CUT.

In Table 5.4, note that the last row has two entries that are 0. This means that for ordering

(32, 0, 0) scheme C does not use the N-ALL classification at all! Consider what happens in

scheme A for ordering (32, 0, 0). Scheme A places 2227972 nodes into the Y-ALL category.

However, only 971304 were found to be true Y-ALL nodes. Scheme C takes the approach of

eliminating the N-ALL category all together, thereby eliminating the problem of inaccurate

classification. Although this may seem simplistic, this is a safer approach for a parallel alpha-

beta searcher since a CUT node is subject to more stringent rules before it is picked as a site

for parallel search.

Figure 5.4 presents 5 bar graphs comparing the performance of schemes A, B and C. Scheme

B has a significantly higher error than either scheme A or C for all orderings considered. The

performances of schemes A and C are relatively close to each other except for those orderings

where wb is of reasonable size. For example, when the ordering (32, 66, 66) is considered, scheme
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Ordering n TrueCUT FalseCUT TrueALL FalseALL Error

(b,wa ,wb)

32, 79, 5 1 4520268 172402 308164 743358 915760

20, 69, 19 1 1233943 73866 131635 254283 328149

32, 66, 66 1 4567304 132753 305239 741520 874273

32, 33, 33 1 6464164 393138 472117 1812923 2206061

32, 0, 0 1 16010177 2084414 1233304 6417374 8501788

Table 5.3: Performance of Scheme B.

Ordering m TrueCUT FalseCUT TrueALL FalseALL Error

(b,wa ,wb)

32, 79, 5 10 5196278 66924 413642 67348 134272

20, 69, 19 10 1453897 33895 171606 34329 68224

32, 66, 66 20 5270913 43527 394465 37911 81438

32, 33, 33 15 8011267 199923 665332 265820 465743

32, 0, 0 20 22427551 3317718 0 0 3317718

Table 5.4: Performance of Scheme C.
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Figure 5.4: Comparing the performance of schemes A, B and C.

A produces an error value of 149611 while scheme C produces an error value of 81438. In this

case, scheme C produced an error value that is over 40 percent lower than that produced by

scheme A. In Figure 5.5, the improvement of C over A is plotted against the value of wb that

produced it. For higher values of wb, scheme C dominates scheme A by a significant margin.
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Chapter 6

Experiments on a Parallel

Alpha-Beta Simulator

6.1 Introduction

In Section 5.5, the performance of three different node classification schemes was considered

within the framework of a sequential alpha-beta searcher. Here, the three schemes from that

section are extended to create three split-point selection schemes whose performance is studied

using a parallel alpha-beta simulator. The parallel alpha-beta simulator (PABSim) is a partial

implementation of the DTS method described in Section 3.5 on a simplified shared memory

multiprocessor system. The implementation is partial in the sense that there is no split-point

selection mechanism in PABSim. It is the responsibility of the user to specify the details of the

split-point selection mechanism. This facility will be used to compare the performance of the

three split-point selection schemes.

6.2 A Simplified Shared Memory Multiprocessor

The simplified multiprocessor that is considered here has 48 processors. An illustration of the

system is presented in Figure 6.1. Each processor has a portion of the total memory in the

system. A cache is attached to each processor primarily to provide fast access to both local and

remote memory. Each cache line is 128 bytes wide. Memory in the system is cache coherent and

coherency is ensured using the 3-state MSI protocol in the caches along with a directory protocol

[2] in the memory units. Details of how the processors are interconnected and the nature of the

interconnection medium does not have a significant impact on the parallel alpha-beta searcher

that is going to be described thus this issue will not be considered further. However, the timing

of the various types of memory accesses is of great significance and this topic is treated next.
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Figure 6.1: The simplified shared memory multiprocessor system.

Timing in the simplified multiprocessor system is expressed in ticks. The value of a tick is

not important as long as all timing in the system is expressed in ticks. A tick is defined to be

the length of time it takes for a block of memory (cache line) to return from the local memory

unit.

A block in the cache may be in one of three states: modified (M), shared (S) or invalid (I).

Furthermore, to ensure cache coherency, the home node has a flag indicating whether a block

is clean or dirty along with a list of nodes that have a copy of the block. The delays associated

with reading a block that is in one of several possible states is given in Table 6.1. For example,

when reading a block that is either in state M or state S, the read can be performed directly

from the cache and there is virtually no delay. If the block is in state I and is flagged as being

clean at the home node, it can be read in 1 or 2 ticks. The read takes 1 tick if the block is local

and 2 ticks if the block is from a remote node. However, if the block is flagged as being dirty,

the block has to be read from the node that modified the block and extra delays are incurred.

A set of delays for block writes is presented in Table 6.2. If a block is in state M in the cache,

it can be modified without any delay. However if a block is in state S or state I, invalidations

have to be sent to all processors that have a cached copy of the block.

The cache in the simplified multiprocessor is infinite in size. This simplification means that

capacity and conflict misses do not occur in the caches. However, this assumption produces

results that are drastically different from reality if the program being studied has a large working

set. Fortunately, in the case of an alpha-beta search routine, the working set is quite small. A

single block is usually enough to store all the data at a node. For example, a chess move is

represented using 2 bytes of memory: 6 bits are used to represent the square that the piece is

moving from, another 6 bits are used to represent the square that the piece is moving to and

the remaining 4 bits are used as flags. On average, a chess position has 32 moves available,

thus 64 bytes are enough to represent the move list at a node. A few extra bytes are required

to hold the value of alpha, beta and any other temporary variables. If the height of the tree is

6 and the data at any node can be stored in a single block of memory, 6 blocks are enough to
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Cache State Home State Home Node Delay

(M/S/I) (Dirty/Clean) (Local/Remote) (ticks)

M/S Dirty/Clean Local/Remote 0

I Clean Local 1

I Clean Remote 2

I Dirty Local 2

I Dirty Remote 3

Table 6.1: Delay for a memory read under various conditions in the simple multiprocessor.

Cache State Home State Home Node Delay

(M/S/I) (Dirty/Clean) (Local/Remote) (ticks)

M Dirty/Clean Local/Remote 0

S/I Clean Local 1

S Clean Remote 2

I Clean Remote 3

I Dirty Local 2

I Dirty Remote 4

Table 6.2: Delay for a memory write under various conditions in the simple multiprocessor.

store the data for the nodes along the path from the root to the leaf of the tree. Therefore, the

working set is no more than 6 blocks.

6.3 Multiprocessor Simulation

Normally, a multiprocessor simulator and the program being run on the simulator are two sep-

arate entities. However, the approach that is taken in PABSim is to embed the multiprocessor

simulation within the code that performs the parallel alpha-beta search. Before detailing the

simulation process itself, a description of fibers [19] is given. Fibers are of primary importance

to the simulation process because they provide the mechanism by which several processors are

simulated on a uniprocessor system.

6.3.1 Win32 Fibers

Most operating systems today provide support for threads. A process running on such an

operating system may create threads that are then scheduled by the operating system. All
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threads have access to the data within the process. The Win32 subsystem that is found in

Microsoft’s Windows 98 and Windows NT operating systems provides support for threads.

Starting with version 4.0 of the subsystem, support is also provided for an entity referred to

as a fiber. Fibers are similar to threads except that they are scheduled by the user rather

than the operating system. In a multiprocessor simulation, a fiber can be used to simulate the

activity of a processor in the system. Fibers are more natural than threads for a multiprocessor

simulation because precise control is required over the process of selecting which processor to

simulate next.

Only three Win32 functions are needed to perform the basic fiber operations. A fiber can be

created with a call to CreateFiber. The function takes three arguments: a value for the size

of the stack used for the fiber, a pointer to a function where the fiber begins execution and a

parameter to be passed to the function where execution begins. The function returns a handle

to the newly created fiber. During cleanup, a fiber can be deleted with a call to DeleteFiber.

A fiber that is executing can suspend itself and can schedule another fiber for execution with a

call to SwitchToFiber. The function takes the handle of the fiber that is to be scheduled as

an argument.

6.3.2 Simulation Support Routines

Five routines are defined to help create multiprocessor simulations. The first function, Yield,

advances the simulation time for the fiber that calls the function and allows the execution of

other fibers that are waiting to run. Scheduling of the other fibers is done in a round robin

fashion. That is, if fiber 1 calls the Yield function, fiber 1 is suspended and fiber 2 is executed.

In order to model accesses to memory blocks, two functions are provided: CRead and CWrite.

A read request to a memory block can be simulated using a call to CRead and a write request

to a memory block can be simulated using a call to CWrite. Both functions properly model

the state transitions for the block in the cache and the home node. The functions also account

for the delays associated with reading and writing a block as indicated in Tables 6.1 and 6.2.

For example, if a fiber executes the CRead function to access a block that is set to state I in

the cache, there will be delays in accessing the block. When such delays occur inside CRead or

CWrite, a call is made to Yield to advance the simulation time for the fiber. Furthermore, the

call to Yield suspends the fiber that initiated the read and another fiber is allowed to run. Both

CRead and CWrite account for memory block contention. If one processor requests access

to a memory block that is busy serving another processor’s request, the request is rejected

and the processor that initiated the request will have to try again. Although CRead and

CWrite account for delays due to network traversal, they do not account for delays due to

network contention. Recall that the network connecting the processors was left unspecified
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in Section 6.2. There may be delays due to network contention depending on the network

structure used. Both CRead and CWrite assume that they can access the network as soon as

a memory request requires communication with a remote node. The last two support routines

allow the creation of regions that are accessible to one fiber at a time. A lock is essentially

a block of memory that is modified atomically. A test-and-set operation is used to create the

lock entry function, LockEnter. The converse of the lock entry function is the LockLeave

function that is used to release a lock.

To illustrate how these simulation support routines are used, a simple matrix multiplication

example is examined next. The routine in Figure 6.2 multiplies two 64 × 64 matrices, a and

b, to produce a third matrix, c. It is assumed that four processors are executing the routine

illustrated with each processor’s id (0, 1, 2 or 3) stored in tid . The rows in matrix c are divided

evenly among the four processors. Each processor is responsible for determining the values

to be placed in the rows assigned to it. All three matrices are shared by the four processors

performing the computation. Now, consider using the simulation support routines to simulate

the execution of the matrix multiplication routine on the simple multiprocessor system. In the

simulation, the matrix multiplication routine is executed by four fibers. Each fiber executes the

routine illustrated in Figure 6.3. The variables, r , c, i and t , fit into the same block of memory

and are local to each processor. The array, BlockT , contains the blocks where these variables

are stored. There is an entry in the array corresponding to each processor in the system. Since

each of these blocks is accessed by a single processor, a call CRead or CWrite is not required

each time r , c, i or t is accessed. However, the initial write request to r needs to be modeled

since the block may not be within the cache of the processor requesting the write. After the

initial write, the block will remain in the cache in the correct state and all accesses to it will not

incur extra delays. Recall that the size of the cache is assumed to be infinite, thus the block

will never be replaced. If each value in the matrix is a four byte integer, 32 entries fit into a

single block of memory (recall that a block is 128 bytes wide). Assuming that the matrices are

aligned to block boundaries, the row and column counters can be used to determine the block

containing a matrix entry. The blocks corresponding to matrix entries in a, b and c are stored

in BlockA, BlockB and BlockC , respectively. A read or write request is sent to the appropriate

block as required (lines 7, 8 and 14). Note that a call to Yield is made when time reaches 10

(line 12). The assumption is that time proportional to a tick has elapsed when time reaches

a count of 10. Consider what happens as four fibers execute the routine in Figure 6.3. If a

fiber executes any read or write request that has an associated delay, execution of the fiber is

suspended and another fiber is run. Similarly, if a fiber has executed a tick worth of operations,

it is suspended and another fiber takes over the simulation system for a tick. In this manner

the four fibers, each of which represents a processor in the multiprocessor system, execute on a
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1: for r ← 16 · tid to 16 · (tid + 1)

2: for c ← 0 to 63

3: t ← 0

4: for i ← 0 to 63

5: t ← t + a[r ][i ] · b[i ][r ]

6: c[r ][c] ← t

Figure 6.2: Parallel matrix multiplication.

uniprocessor system.

6.4 The Parallel Alpha-Beta Simulator (PABSim)

In the following description of PABSim, calls to the first three simulation support routines,

Yield, CWrite and CRead, are omitted for clarity. These calls would never be present in any

parallel program — they are only present in PABSim for simulation purposes. Furthermore,

code that is used to generate the artificial tree is also omitted. Note that the artificial tree

generation code in PABSim is identical to the one described in Section 4.2. The resulting

description details the DTS-like parallel alpha-beta search procedure that forms the core of

PABSim without the added clutter of simulation support and artificial tree generation code.

6.4.1 Node Structure

The node structure is fundamental to all routines in PABSim. Figure 6.4 illustrates the fields

within the NodeT structure that is used to hold all node data. The first field, lock , is a lock

variable that controls access to the node. A node may be accessed by several processors at

the same time, therefore a lock is necessary to ensure that only one processor is allowed to

modify the node at any time. The second field, threads, is an integer that indicates the number

of threads working at the node. Recall that in DTS node ownership may transfer from one

processor to another. A pointer to the parent node is maintained in parent so that the node’s

current owner knows where to return the score determined at the node when it is closed. When

returning the score determined at a node to its parent, certain data structures have to be

cleared at the parent so that the node isn’t visited again. The integer field, parentidx , contains

an index that specifies the position of the child among the other children at the parent. For

example, if the current node is the fifth node expanded at the parent, parentidx would contain

4 (indexing starts at 0). A count of the moves that remain unexamined at a node is held in
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1: time ← 0

2: CWrite(tid ,BlockT [tid ])

3: for r ← 16 · tid to 16 · (tid + 1)

4: for c ← 0 to 63

5: t ← 0

6: for i ← 0 to 63

7: CRead(tid ,BlockA[(64 · r + i)/32])

8: CRead(tid ,BlockB [(64 · i + r)/32])

9: t ← t + a[r ][i ] · b[i ][r ]

10: time ← time + 1

11: if time = 10 then

12: Yield(tid , 1)

13: time ← 0

14: CWrite(tid ,BlockC [(64 · r + c)/32])

15: c[r ][c] ← t

Figure 6.3: Simulating matrix multiplication.
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1: record NodeT

2: lock

3: threads

4: parent

5: parentidx

6: mvsleft

7: mvsfini

8: type

9: alpha

10: beta

11: score

12: branch[32]

13: child [32]

Figure 6.4: The NodeT structure.

mvsleft . Note that a move that is currently being searched by a processor is not included in

this count. A similar count for moves that have been completely searched is held in mvsfini .

PABSim uses the minimax formulation as opposed to the negamax formulation. Recall that

in negamax every node is of the maximizing type. In minimax, a distinction is made between

a node that is of the minimizing type and a node that is of the maximizing type. A flag that

specifies the node type is stored in type. The lower and upper bound at a node are stored in

alpha and beta, respectively. At a minimizing node, the lowest value found so far is stored in

score. The same field is used at a maximizing node to store the highest value found. A list of

moves at a node is stored in the array, branch. As branches are expanded, the newly allocated

node data structures are stored in child . Note that the highest branching factor at a node is

assumed to be 32.

6.4.2 Node Allocation

Nodes are allocated and deallocated as the search of the tree progresses. The allocation and

deallocation routines use two heaps of nodes: a global heap and a local heap. The global heap

is shared by all processors and it initially contains p · d · 2 nodes. Here, p is the number of

processors involved in the search and d is the depth of the tree being searched. Each processor

also has a local heap of nodes. Although the local heaps are initially empty, the local heaps
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split

exit

return

update eval

search

expand

Figure 6.5: All possible state transitions for a processor performing parallel alpha-beta search.

can contain up to d · 2 nodes. When a processor allocates a node, the local heap is checked

for a free node before the global heap is used. The global heap is shared by all processors and

access to it is controlled by a lock, thus it is faster to satisfy node allocation requests locally

whenever possible. When a node is deallocated, it is returned to the local heap if possible. If

the local heap has reached its maximum size, the node is returned to the global heap. At the

start of the search, all allocations will use the global heap. However, as the search progresses,

all node allocation requests will be satisfied locally.

6.4.3 Search Procedure

A processor that is participating in the parallel alpha-beta search procedure defined by PABSim

may be in one of seven possible states: expand, search, eval, return, split, update and exit.

Figure 6.5 illustrates all possible state transitions that can occur. Except for the last state,

exit, there is a routine in PABSim corresponding to each of the six other states. These routines

are referred to as state routines. Each processor also maintains a pointer to the “current” node.

The target of all work performed by a processor is its current node. A processor may be viewed

as a state machine whose behavior is governed by its state and its current node. Parallel search

is then a result of several interacting state machines.

Figure 6.6 illustrates the TDataT data structure that is used to hold search data local to a

processor. A pointer to the current node is stored in node and the processor’s current state is

stored in state. An additional field called value is used as a temporary data storage area when

a processor switches states. A variable of type, TDataT , is passed into each state routine.

State: expand

The routine corresponding to the expand state is illustrated in Figure 6.7. When a node is

initially created, its move list is empty. In the expand state, a call is made to a move generation
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1: record TDataT

2: node

3: state

4: value

Figure 6.6: The TDataT data structure.

Expand(tdata)

1: BranchGenerate(tdata.node)

2: tdata.state ← search

Figure 6.7: The expand state routine.

routine to create a valid move list. Since PABSim searches artificial trees, the move generation

routine that it uses creates a set of seeds that are to be passed on to the child nodes (see

Section 4.2). Once the move generation is complete, a processor that is in the expand state

changes to the search state.

The node being expanded is already locked before the expand routine is executed. It is

locked when it is initially created by search state. When the state changes from expand to

search, the node remains locked.

State: search

The search state routine is given in Figure 6.8. At the start of the routine, two checks are

performed to ensure that the node is searchable. The first check verifies that the node score

is within the bounds at the node (lines 1–10) and the second check verifies that there are

unassigned moves at the node (lines 11–13). If either of the two checks fail, a transition is

made to the return state. If both checks pass, an unassigned move is expanded to create a new

node. A node created by NodeAlloc is initially locked. This is to prevent other processors

from entering the newly created node before the node’s move list is populated. Note that when

the call to NodeAlloc returns, the processor executing the search routine holds two locks:

one lock controls access to the current node and the other lock controls access to the newly

created node. Search now moves to the new node; the lock corresponding to the current node

is released and the newly created node becomes the current node. If the new node is a leaf, the
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processor’s state changes from search to eval. However, if the new node is an internal node, the

state changes to expand.

State: eval

The eval state routine is illustrated in Figure 6.9. In the eval state, a score is determined for the

current node. Normally this would involve the execution of an application specific routine that

computes a score for the node. This routine is usually a significant percentage of the total search

time. However, since PABSim searches artificial trees, the score is available instantaneously.

In PABSim, Evaluate does not return the score immediately but delays the processor by a

specified amount of time before returning. Once evaluation is complete, the processor’s state is

changed to return.

State: return

In the return state, the current node has been completely searched and the score determined

at the node is ready to be returned to its parent. The return state routine is presented in

Figure 6.10. Recall that in DTS, a node is owned by the last processor that is left searching the

node. The responsibility of returning the node’s score to its parent falls on the node’s owner.

At the start of the return routine, a check is performed to see if the current processor is the last

one at the node. If the current processor is not the last, the thread count is simply decremented

and the processor enters the split state where it searches for another node to work on. However,

if the current processor is the last one at the node, it begins the process of deallocating the node

(lines 6–12). If the node being deallocated is the root node itself, then the search is complete

and the processor enters the exit state. In addition, a global flag called searchend is set to

indicate that the search of the tree is complete. For any other node, the node’s score is placed

within the processor’s value field. The value field is used as temporary storage for a node’s

score before it is actually used in the update state. The current node is then deallocated, the

parent node becomes the current node and the processor’s state is changed to update.

State: update

In the update state, the search has just returned from the search of a child node. The child

node’s score is found in the processor’s value field. Figure 6.11 shows the update state routine.

If the score returned by the child is better than the score at the node, the score is updated.

When an update occurs, the new score is actually a bound for the nodes lower in the tree. If

the new score is a lower bound, TransLB is used to transmit the new bound to the subtree

rooted at the current node. TransLB performs a depth first traversal on the subtree. At each
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Search(tdata)

1: if tdata.node.type = max then

2: if tdata.node.score ≥ tdata.node.beta then

3: tdata.node.score ← tdata.node.beta

4: tdata.state ← return

5: return

6: else

7: if tdata.node.score ≤ tdata.node.alpha then

8: tdata.node.score ← tdata.node.alpha

9: tdata.state ← return

10: return

11: if tdata.node.mvsleft = 0 then

12: tdata.state ← return

13: return

14: temp ← NodeAlloc(tdata.node)

15: tdata.node.mvsleft ← tdata.node.mvsleft − 1

16: LockLeave(tdata.node.lock)

17: tdata.node ← temp

18: if tdata.node.depth = 0 then

19: tdata.state ← eval

20: else

21: tdata.state ← expand

Figure 6.8: The search state routine.

Eval(tdata)

1: tdata.node.score ← Evaluate(tdata.node)

2: tdata.state ← return

Figure 6.9: The eval state routine.
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Return(tdata)

1: if tdata.node.threads > 1 then

2: tdata.node.threads ← tdata.node.threads − 1

3: LockLeave(tdata.node.lock)

4: tdata.state ← split

5: else

6: if tdata.node = root then

7: LockLeave(tdata.node.lock)

8: tdata.state ← exit

9: searchend ← true

10: else

11: tdata.value ← tdata.node.score

12: tdata.node ← NodeDealloc(tdata.node)

13: tdata.state ← update

Figure 6.10: The return state routine.
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Update(tdata)

1: tdata.node.mvsfini ← tdata.node.mvsfini − 1

2: if tdata.node.type = max then

3: if tdata.value > tdata.node.score then

4: tdata.node.score ← tdata.value

5: if tdata.node.threads > 1 then

6: TransLB(tdata.node)

7: else

8: if tdata.value < tdata.node.score then

9: tdata.node.score ← tdata.value

10: if tdata.node.threads > 1 then

11: TransUB(tdata.node)

12: tdata.state ← search

Figure 6.11: The update state routine.

node, the new lower bound is compared to the existing bound. If the new bound is better, the

node’s bound is changed. A similar routine exists for transmitting upper bounds and it is called

TransUB. Once the current node’s score is updated, the processor enters the search state.

State: split

The split state is a state in which idle processors try to find a node where work is available.

Figure 6.12 illustrates the split state routine. At the start of the routine, the global vari-

able, searchend is checked to determine if the tree search is complete. If search is complete,

the processor in the split state enters the exit state. However, if the search is not complete,

the processor tries to find a split-point where the search effort can be shared. The SplitP-

ntSearch routine can be used to search through the entire tree to find a split-point. However,

SplitPntSearch is too expensive to execute each time a split-point is needed. The previous

results of executing SplitPntSearch can be found in splitpnt . When a split-point is needed,

the node in splitpnt is checked for validity before SplitPntSearch is invoked. A valid split-

point is one that has some unassigned moves and one where the node score is within the node

bounds. Note that even after executing SplitPntSearch, a valid split-point may not be found.

In this case, the processor delays for some time before retrying.

Recall that we are trying to compare the performance of three different split-point selection



Chapter 6. Experiments on a Parallel Alpha-Beta Simulator 72

Split(tdata)

1: for ever

2: if searchend = true then

3: tdata.state ← exit

4: return

5: LockEnter(splitpntlock)

6: if SplitPntValid(splitpnt) = true then

7: splitpnt .threads ← splitpnt .threads + 1

8: tdata.node ← splitpnt

9: tdata.state ← search

10: LockLeave(splitpntlock)

11: return

12: splitpnt ← SplitPntSearch()

13: if SplitPntValid(splitpnt) = true then

14: splitpnt .threads ← splitpnt .threads + 1

15: tdata.node ← splitpnt

16: tdata.state ← search

17: LockLeave(splitpntlock)

18: return

19: LockLeave(splitpntlock)

20: Delay(rechecktime)

Figure 6.12: The split state routine.

schemes. In Figure 6.12, SplitPntSearch is actually a function pointer. The function that

is executed changes depending on the split-point selection scheme being used.

State Timing

Apart from the delays due to memory access, lock entry and lock release, there are finite delays

associated with the computation that takes place within each state. The search and return

state each consume a tick of processor time. The split state is one tick in duration if a valid

split-point is found immediately. However, if a split-point search routine is started, an extra

tick of processor time is consumed for every node that is examined during the search. If the

search does not find a split-point, another SplitPntSearch is not started until 36 ticks have
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elapsed. The update state is one tick in duration if no score updates are performed. However,

if an update has to be performed, an extra tick is spent for every child that has to be informed

of the score change. The expand and eval state are 3 and 8 ticks in duration, respectively.

6.5 Split-Point Selection Schemes

Three different split-point selection schemes are considered. The first scheme, A, is based on

the YBWC search procedure. Node classification is identical to the one described in Section 3.4.

In scheme A, a node can be selected as a split-point only if it meets the following criteria:

• At least one branch at the node must have been examined.

• If the node is of the Y-CUT type then at least mA branches must have been examined.

Here, mA is a value that is varied during the performance experiments.

At any point in the search, there will be several nodes in the tree that meet this criteria.

Three guidelines are used to determine which node gets selected as the split-point. In order of

decreasing priority, the guidelines are as follows:

1. A node that is higher up in the tree is preferable as it represents more work.

2. A node that has many branches already examined is a good split-point since the score at

the node may have stabilized. This guideline is not applicable once more than a quarter

of the moves at a node have been examined. For example, on a tree with a branching

factor of 32, a node that has 4 branches examined is preferable to one that has 3 branches

examined. However, a node that has 10 branches examined is considered equally good as

a node that has 11 branches examined.

3. A node that has several unexamined branches makes a good split-point as a lot of parallel

work is available at the node.

Scheme B is based on the DTS search procedure. Nodes in the tree are classified according

to the scheme described in Section 3.5. In selecting a split-point, scheme B uses guidelines 1

and 3 from scheme A. However, guideline 2 is replaced by a new guideline that favors nodes

with higher confidence. At a D-PV or D-ALL node, confidence is measured by the number of

moves examined. As the number of moves examined increases, the confidence that the node is

a D-PV or D-ALL node increases. The number of moves examined is also used at a D-CUT

node as a measure of confidence. However, at a D-CUT node, the confidence decreases as more

moves are examined. Once more than mB moves have been examined at a D-CUT node, the

node’s type is changed from D-CUT to D-ALL and the confidence that it is a D-ALL node
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begins increasing. A node can be selected as a split-point only if it is a D-PV or a D-ALL node

with a confidence of at least 1. Furthermore, in a manner similar to guideline 2 in scheme A,

the confidence measure is not applicable if the nodes being compared have a confidence value

that exceeds b/4 on a tree with a branching factor of b.

The third scheme, C, uses the neural network described in Section 5.4 to classify the nodes

in the tree. A node’s type is determined using the procedure described in Section 5.5. The range

used to determine if a node is of the N-CUT type is identical to that used in Section 5.5. In

addition to the value used for node classification, the neural network also provides a constraint,

w, on the number of branches that must be searched sequentially before the node can be selected

as a split-point. For greater flexibility, two variables, mC,a and mC,c, are used to adjust the

constraint that the neural network produces. At all N-ALL and N-PV nodes, w+mC,a branches

have to be searched sequentially before the node may become a split-point. At a N-CUT node,

the constraint is increased even higher — w+mC,a+mC,c nodes have to be searched sequentially

before parallel search is possible. When a few processors are used for the parallel search, mC,a

and mC,c are usually large; greater accuracy in split-point selection is obtained at the cost

of reduced parallelism. However, when a large number of processors are participating in the

search, mC,a and mC,c are set to a small value; split-point selection accuracy is reduced but

the parallelism that is available is increased. From the set of nodes that pass these constraints,

the node that is finally selected as the split-point is based on the same set of guidelines as in

scheme A.

6.6 Performance of Split-Point Selection Schemes

The performance of the three split-point selection schemes, A, B and C, was compared using

the trees generated by set tg1. The results reported here are totals for the 100 trees generated

by the set. During the performance experiments, variables, mA, mB, mC,a and mC,c, were

varied to find the values at which the highest speed-up was obtained. The figures reported here

correspond to the highest speed-up obtained for each scheme.

6.6.1 Performance Measures

Before introducing the measures used to compare the performance of the split-point selection

schemes, a few definitions are introduced. On a p processor system, the time taken to search

the 100 trees generated by tg1 is denoted tp. On the same set of trees, the number of nodes

examined by a p processor search is denoted np.

Three measures are used to compare performance. The first measure, speed-up, is the
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traditional metric used to judge the efficiency of a parallel program relative to a sequential one:

SU p =
t1
tp

(6.1)

A parallel search usually examines a larger tree compared to a sequential search. The search

overhead associated with a p processor search is given by:

SOp =
np

n1
− 1 (6.2)

Ideally, each processor participating in a parallel search spends all of its time searching the

tree. However, there are several obstacles that prevent the realization of this ideal behavior.

Communication is necessary in PABSim to ensure that each processor has the latest bounds.

There are synchronization overheads associated with lock entry and release. Furthermore,

the process of selecting a split-point for an idle processor adds extra overheads. These three

overheads are grouped into a single measurement referred to as communication-synchronization-

split (CSS ) overhead. On a shared memory multiprocessor, communication and synchronization

costs are usually small. Much of the CSS overhead will be due to the time spent searching for

a split-point. The CSS overhead can be approximated as the extra effort required to evaluate

each node in a parallel search:

CSS p =
tpp/np

t1/n1
− 1 =

p

SU p(SOp − 1)
− 1 (6.3)

Note that the CSS overhead should not be used as a figure of merit without taking SU and SO

into account. For example, a parallel search that spends most of its time evaluating subtrees

that are usually cut-off will have a small CSS overhead. However, this particular search will

have a small speed-up and a large search overhead.

6.6.2 Uniprocessor Search

Table 6.3 presents the results of a uniprocessor search on the trees generated by tg1. These

results will be used in evaluating SU p, SOp and CSS p as p takes on values in the set {12, 24, 48}.

6.6.3 Trees With Ordering (32, 79, 5)

The performance of schemes A, B and C under ordering (32, 79, 5) is presented in Table 6.4.

Figure 6.13 compares the performance of the three schemes on the basis of speed-up, search

overhead and CSS overhead. Schemes A and B perform similarly on all three measures. When

using 24 and 48 processors, Scheme C’s behavior is remarkably different from that exhibited

by schemes A and B. With 24 processors, scheme C has a lower speed-up. Furthermore, it has

a higher search overhead as well as a higher CSS overhead. The higher search overhead can
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Ordering t1 (ticks) n1 (nodes)

32, 79, 5 220380112 22123280

20, 69, 19 59604402 6034410

32, 66, 66 202468590 20495914

32, 33, 33 411967993 40776051

32, 0, 0 1855606486 178053342

Table 6.3: Performance of alpha-beta search on a single processor.

be interpreted as a reduction in split-point selection accuracy and the higher CSS overhead

can be interpreted as an increase in the time spent performing communication and split-point

selection. With 48 processors, scheme C has a much higher speed-up and an even higher search

overhead. However, its CSS overhead is significantly lower than the CSS overhead calculated

for schemes A and B. Here, scheme C keeps all processors busy by reducing the split-point

selection accuracy. Although there is increased inaccuracy in the split-point selection, there is

also an increase in the useful work performed by the processors participating in the search.

6.6.4 Trees With Ordering (20, 69, 19)

Table 6.5 presents the performance of the three split-point selection schemes under the ordering

(20, 69, 19). Figure 6.14 compares the speed-up, search overhead and CSS overhead observed for

the three schemes. Although schemes A and B perform similarly on the speed-up measurement,

there is a difference in the way in which they achieve their individual speed-up values. Scheme

A spends less time selecting a split-point and searches more nodes, whereas scheme B spends

more time in split-point selection and examines fewer nodes. For both schemes, the speed-up

with 48 processors is less than the speed-up obtained with 24 processors. With 48 processors,

both schemes exhibit a large CSS overhead. As described in Section 6.6.1, CSS overhead is

primarily due to the time spent searching for a split-point. Using a modified version of PABSim

that provides extra timing information, the split state is found to account for over 60 percent of

the total search time using scheme A. When using scheme B, the split state is found to account

for over 70 percent of the total search time. The split state has effectively become the limiting

factor in the parallel search for the following reasons:

• More processors are actively searching for a split-point.

• There are fewer split-points as a result of the smaller tree size and the constraints imposed

by the schemes A and B.
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Figure 6.13: Performance of schemes A, B and C under ordering (32, 79, 5).
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Scheme A

p mA tp (ticks) SU p np (nodes) SOp CSS p

12 4 29687828 7.423 32457819 0.467 0.102

24 5 19873555 11.089 33626988 0.520 0.424

48 2 17194575 12.817 41103307 0.858 1.016

Scheme B

p mB tp (ticks) SU p np (nodes) SOp CSS p

12 6 28601791 7.705 30927242 0.398 0.114

24 5 19356414 11.385 33797226 0.528 0.380

48 1 17202647 12.811 41280623 0.866 1.008

Scheme C

p mC,a,mC,c tp (ticks) SU p np (nodes) SOp CSS p

12 −1, 3 29539208 7.461 31415747 0.420 0.133

24 −1, 3 21180441 10.405 35290701 0.595 0.446

48 −5, 3 14579205 15.116 61063962 1.760 0.150

Table 6.4: Performance of schemes A, B and C under ordering (32, 79, 5).

With 12 and 24 processors, scheme C has similar speed-up values as schemes A and B. However,

when searching with 48 processors, scheme C performs significantly better than schemes A and

B. To achieve this speed-up, scheme C trades split-point selection accuracy in favor of keeping

its processors busy.

6.6.5 Trees With Ordering (32, 66, 66)

The performance of schemes A, B and C under ordering (32, 66, 66) is presented in Table 6.6.

A comparison of the speed-up, search overhead and CSS overhead exhibited by each scheme

is presented in Figure 6.15. The performance of schemes A and B on all three measures is

similar. Scheme C outperforms both scheme A and scheme B on the speed-up measurement.

When searching with 12 processors, scheme C achieves a small search overhead at the cost of

a small increase in CSS overhead. With 24 processors, the search overhead is still quite small

but the increase in CSS overhead is much larger. When searching with 48 processors, scheme

C reduces split-point selection accuracy to keep all its processors busy.
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Scheme A

p mA tp (ticks) SU p np (nodes) SOp CSS p

12 3 9126291 6.531 9164428 0.519 0.210

24 2 6785067 8.785 10052455 0.666 0.640

48 1 8459246 7.046 13424461 1.225 2.062

Scheme B

p mB tp (ticks) SU p np (nodes) SOp CSS p

12 4 8828227 6.752 8710874 0.444 0.231

24 2 6751780 8.828 9168454 0.519 0.789

48 1 8695562 6.855 10482967 0.737 3.031

Scheme C

p mC,a, mC,c tp (ticks) SU p np (nodes) SOp CSS p

12 −1, 3 9298183 6.410 8803379 0.459 0.283

24 −3, 3 6699466 8.897 14298996 1.370 0.138

48 −4, 3 5331472 11.180 17930200 1.971 0.445

Table 6.5: Performance of schemes A, B and C under ordering (20, 69, 19).

Scheme A

p mA tp (ticks) SU p np (nodes) SOp CSS p

12 4 31659621 6.395 35071150 0.711 0.097

24 3 18647768 10.858 35806782 0.747 0.265

48 3 14933821 13.558 29842937 0.456 1.432

Scheme B

p mB tp (ticks) SU p np (nodes) SOp CSS p

12 5 31281023 6.473 35130206 0.714 0.082

24 3 18527219 10.928 35449416 0.730 0.270

48 2 14879228 13.607 29993951 0.463 1.410

Scheme C

p mC,a,mC,c tp (ticks) SU p np (nodes) SOp CSS p

12 0, 3 23623744 8.571 24429533 0.192 0.175

24 0, 3 16897659 11.982 25056267 0.223 0.638

48 −3, 3 12389182 16.342 51026145 1.490 0.180

Table 6.6: Performance of schemes A, B and C under ordering (32, 66, 66).
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Figure 6.14: Performance of schemes A, B and C under ordering (20, 69, 19).
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Figure 6.15: Performance of schemes A, B and C under ordering (32, 66, 66).
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Scheme A

p mA tp (ticks) SU p np (nodes) SOp CSS p

12 6 65197824 6.319 72018499 0.766 0.075

24 6 37510255 10.983 76283377 0.871 0.168

48 3 26194285 15.727 77506026 0.901 0.606

Scheme B

p mB tp (ticks) SU p np (nodes) SOp CSS p

12 7 64122450 6.425 72502627 0.778 0.050

24 5 37225749 11.067 77679512 0.905 0.138

48 2 26066328 15.805 77601935 0.903 0.596

Scheme C

p mC,a,mC,c tp (ticks) SU p np (nodes) SOp CSS p

12 0, 1 55947868 7.363 57645755 0.414 0.153

24 −1, 1 37256277 11.058 73518488 0.803 0.204

48 −3, 1 23038327 17.882 99488108 1.440 0.100

Table 6.7: Performance of schemes A, B and C under ordering (32, 33, 33).

6.6.6 Trees With Ordering (32, 33, 33)

Table 6.7 presents the performance of schemes A, B and C under the ordering (32, 33, 33).

Figure 6.16 compares the performance of the three schemes on the basis of speed-up, search

overhead and CSS overhead. Once again, schemes A and B exhibit a similar performance

on all three measures. Scheme C has a higher speed-up relative to schemes A and B when

searching with 12 and 48 processors. With 24 processors, all three schemes exhibit a similar

speed-up. When searching with 12 and 24 processors, scheme C favors a higher split-point

selection accuracy at the cost of a higher CSS overhead. When searching with 48 processors,

it favors a lower CSS overhead so that all the processors can be kept busy.

6.6.7 Trees With Ordering (32, 0, 0)

The performance of the schemes A, B and C under the ordering (32, 0, 0) is presented in Ta-

ble 6.8. Figure 6.17 compares the performance of the three schemes on the basis of speed-up,

search overhead and CSS overhead. All three schemes exhibit similar speed-ups. Compared to

schemes A and B, there is a significant difference in the way scheme C achieves its speed-up

results. With 12 and 24 processors, scheme C favors an increased split-point selection accuracy

at the cost of increased CSS overhead. With 48 processors, the scenario is reversed. Split-point
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Figure 6.16: Performance of schemes A, B and C under ordering (32, 33, 33).
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Scheme A

p mA tp (ticks) SU p np (nodes) SOp CSS p

12 6 260414822 7.126 292745638 0.644 0.024

24 4 161551036 11.486 359652466 1.020 0.034

48 5 94042385 19.732 371461151 1.086 0.166

Scheme B

p mB tp (ticks) SU p np (nodes) SOp CSS p

12 8 258220759 7.186 291397171 0.637 0.020

24 6 158327672 11.720 349871306 0.965 0.042

48 4 93253513 19.899 372052246 1.090 0.154

Scheme C

p mC,a,mC,c tp (ticks) SU p np (nodes) SOp CSS p

12 −5, 0 246839068 7.517 272691007 0.532 0.042

24 −8, 0 152396535 12.176 334553742 0.879 0.049

48 −12, 0 89229804 20.796 398466668 1.238 0.031

Table 6.8: Performance of schemes A, B and C under ordering (32, 0, 0).

accuracy is allowed to decrease in order to keep all processors busy.

6.6.8 The Significance of the Neural Network Approach

In the experiments, the neural network approach, as embodied by scheme C, exhibits behavior

that is quite unlike the other two schemes. In particular, for non-random trees (an exponential

ordering where both wa and wb are non-zero), scheme C has a higher speed-up than schemes

A and B when a large number of processors are used. Scheme C achieves this by reducing the

split-point selection accuracy to keep all of its processors busy. In scheme A, when mA = 1, a

node may be selected as a split-point if at least one branch has been examined. Since scheme

C achieves a higher degree of parallelism, it must have less stringent criteria for split-point

selection. Specifically, scheme C may select a node as a split-point even before a branch has

been fully examined. When searching a tree with a large wb using a few processors, scheme C

obtains a higher speed-up than schemes A and B by increasing the split-point selection accuracy

at the cost of an increase in CSS overhead. The performance that the neural network approach

obtains over the other two schemes is primarily due to its flexibility. It is flexible enough to

increase parallelism when a large number of processors are being used and to increase split-point

selection accuracy when a few processors are being used.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This work offers three main contributions. First, the concept of an exponentially ordered game

tree was introduced as a model for the game trees encountered in practice. Various statistics

arising from the search of exponentially ordered trees were compared to the statistics arising

from the search of chess trees. With a certain set of parameters, exponentially ordered trees

were found to produce trees that were quite similar to chess trees. Second, neural networks were

introduced as a method of solving the node classification problem. The neural network approach

was found to outperform all other node classification techniques. The prediction accuracy of the

neural network approach increased as the tree ordering parameter, wb, was increased. Third,

the neural network approach was used as a split-point selection scheme for parallel search. Here,

the neural network approach was found to perform better than techniques based on YBWC and

DTS when a large number of processors was used. Furthermore, the neural network approach

performed well on a few processors if the tree ordering parameter wb was relatively large.

7.2 Future Work

There is a lot of room for experimentation with the neural network approach. In this work,

we explored the performance of the neural network approach on exponentially ordered game

trees. While exponentially ordered trees mimic most of the behavior of real game trees, there

is no substitute for experimentation on real game trees. Chess has long served researchers as

the main source of game trees and chess can be used once again as a testbed for the neural

network approach. The parallel search results described here are based on simulations. This

can be extended by performing the same experiments on a real shared memory multiprocessor

with real game trees.
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Appendix A

Seeds Used For Artificial Tree

Generation

The artificial tree generation method presented in Section 4.2 generates a tree based on the

value of the seed parameter. The experiments conducted in this text use two sets of seeds: tg1

and tg2. The first set consists of 100 seed values while the second set consists of 200 seed values.

A.1 Set 1, tg1

A simple linear congruential random number generator produces the seed values for the first

set, tg1. The random number generator is based on the equation: rn = (rn−1 × 16807) mod

2147483647. Note that this is one of the two linear congruential generators used in Section 4.2.

To start the computation of rn, r0 is initially set to 12345678. The values of rn where 1 ≤ n ≤
100 make up set tg1. Table A.1 presents the seeds in the set.

A.2 Set 2, tg2

The second set, tg2, is generated using the digits of π. A seed is formed using 9 sequential

digits of π. For example, the first seed in this set is 314159265. Tables A.2 and A.3 present the

seeds in this set.
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1 ≤ n ≤ 25 26 ≤ n ≤ 50 51 ≤ n ≤ 75 76 ≤ n ≤ 100

1335380035 869731965 2022461825 374445651

380653449 1811434274 1144728060 1180970648

288732931 2047663247 138510948 1529815363

1568812745 1650749155 81229689 1932584058

231587350 799812493 1575267179 250101932

1048223087 1348423279 1337077238 837673946

1677066869 555123363 988256859 2030704338

740000409 1289399374 994503316 90206996

1109074287 677796942 752007412 2133010638

53485650 1479940507 1047310890 1565273496

1285155105 1204501596 1378157419 876971523

211328210 1877467351 2080608239 1080117701

2002756980 1616542887 1306448773 858932617

677879783 1420683613 1611720884 695418786

724765547 1706296346 1981657778 1297529329

607302646 226065185 398393524 2026480866

2093280779 578992753 2093430170 2120757090

1692947500 882795115 2056278390 1778322372

1357793398 172980683 416569560 1734190906

1272407165 1740964791 487905701 898500059

705065330 930551963 1138552462 2132969557

218237165 1810924688 1571934065 874825129

9963080 2072985933 1152005062 1512895742

2093244742 2047370651 36515683 1032355315

1087273641 1028055477 1686244787 1275395093

Table A.1: The seed values in set tg1
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1 ≤ n ≤ 25 26 ≤ n ≤ 50 51 ≤ n ≤ 75 76 ≤ n ≤ 100

314159265 564823378 807446237 958537105

358979323 678316527 996274956 079227968

846264338 120190914 735188575 925892354

327950288 564856692 272489122 201995611

419716939 346034861 793818301 212902196

937510582 045432664 194912983 086403441

097494459 821339360 367336244 815981362

230781640 726024914 065664308 977477130

628620899 127372458 602139494 996051870

862803482 700660631 639522473 721134999

534211706 558817488 719070217 999837297

798214808 152092096 986094370 804995105

651328230 282925409 277053921 973173281

664709384 171536436 717629317 609631859

460955058 789259036 675238467 502445945

223172535 001133053 481846766 534690830

940812848 054882046 940513200 264252230

111745028 652138414 056812714 825334468

410270193 695194151 526356082 503526193

852110555 160943305 778577134 118817101

964462294 727036575 275778960 000313783

895493038 959195309 917363717 875288658

196442881 218611738 872146844 753320838

097566593 193261179 090122495 142061717

344612847 310511854 343014654 766914730

Table A.2: The first hundred seed values in set tg2
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101 ≤ n ≤ 125 126 ≤ n ≤ 150 151 ≤ n ≤ 175 176 ≤ n ≤ 200

359825349 953311686 125338243 841757467

042875546 172785588 003558764 289097777

873115956 907509838 024749647 279380008

286388235 175463746 326391419 164706001

378759375 493931925 927260426 614524919

195778185 506040092 992279678 217321721

778053217 770167113 235478163 477235014

122680661 900984882 600934172 144197356

300192787 401285836 164121992 854816136

661119590 160356370 458631503 115735255

921642019 766010471 028618297 213347574

893809525 018194295 455570674 184946843

720106548 559619894 983850549 852332390

586327886 676783744 458858692 739414333

593615338 944825537 699569092 454776241

182796823 977472684 721079750 686251898

030195203 710404753 930295532 356948556

530185296 464620804 116534498 209921922

899577362 668425906 720275596 218427255

259941389 949129331 023648066 025425688

124972177 367702898 549911988 767179049

528347913 915210475 183479775 460165346

151557485 216205696 356636980 680498862

724245415 602405803 742654252 723279178

069595082 815019351 786255181 608578438

Table A.3: The second hundred seed values in set tg2
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