A comparison of some parallel game-tree search algorithms
(Revised version)

Jaleh Rezaie (jrezaie@ms.uky.edu)
Raphael Finkel (raphael @ms.uky.edu)

Department of Computer Science
University of Kentucky
Lexington, KY 40506-0027

Abstract

This paper experimentally compares several sequential and parallel game-tree
search methods: alpha-beta, mandatory work first, principal-variation splitting, tree split-
ting, ER, and delay splitting. All have been implemented in a common environment pro-
vided by the DIB package.

Key wor ds: gametrees, heuristic search, alpha-beta

1. | nt roducti on

In this paper we compare some of the parallel methods for searching large game
trees. These trees arise in the area of artificial intelligence and are closely related to trees
searched in other application areas. Exhaustive search of a tree is prohibitively expen-
sive. There are several ways to ameliorate the problem.

e Search only to a given depth.
e Apply heuristics, such as the alpha-beta method, to cut off fruitless search.
e Apply many computers simultaneously in pursuing the search.

We concentrate on distributed variants of the alpha-beta heuristic that try to avoid search-
ing unnecessary parts of the tree while keeping many processors fruitfully busy.

The agorithms we compare are aphabeta, mandatory work first, principal-
variation splitting, tree splitting, ER, and delay splitting. To be able to make a fair com-
parison between the above algorithms, we have extended the DIB package [1] to use it as
aframework for implementing all the algorithms we compare.

Section 2 describes the DIB package. Section 3 introduces the apha-beta pruning
and briefly describes the algorithms used in the experiment. Section 4 presents experi-
mental results that compare the algorithms. Section 5 compares the effects of severa
sorting strategies on the above algorithms. Section 6 illustrates the new results achieved
by adjustments made to MWF algorithm. Section 7 summarizes the results, and details
remaining parts of this experiment.

2. DIB —A distributed inplenmentation of backtrack-
I ng

In this section we describe how DIB works and how we use it to implement dif-
ferent tree-search algorithms.

Game-tree search 2

2.1. Description of DB

DIB is a multi-purpose package developed by Finkel and Manber for tree-traversal
problems[1]. It allows applications such as backtrack and branch-and-bound to be
implemented on a multicomputer. DIB’s requirements from the distributed operating
system are minimal. The machines must be connected by a network that supports a
message-passing mechanism; each machine must be able to communicate, not neces-
sarily directly, with al other machines. Our implementation of DIB is programmed in C
and runs in the Unix environment across machines connected by an internet or on a Unix
multiprocessor.

The application program must specify the root of the problem tree, how to generate
children, and calculations needed at each node. It can also optionally specify how to
generate values of a tree node from combining its children’s values and how to spread
information either globally or locally throughout the tree.

DIB divides the problem into subproblems and assigns them to any number of pro-
cessors (potentially nonhomogeneous machines in a network) dynamically. Each proces-
sor maintains a table of explicit work, recording all the problems that have been sent to
the processor, have been generated by the processor itself, and/or have been sent to other
processors. Each processor is responsible for the work in its table. Each item of work
(represented by a node in the backtrack tree, which stands as well for al its descendents)
is labeled by which processor, if any, has been assigned that work.

When a processor A isfinished with a problem and has reported its result to the pro-
cessor that gave it that problem, it will take the first (in an inorder traversal of the tree)
unassigned problem from its table. If no unassigned problem is available, A sends a
work request message to another processor (or processors), selected at random from A’s
peers, repeatedly (with some delay) until new work arrives.

A processor B that receives a work request message interrupts its own search and
trys to respond by sending some work to the requesting processor from its table. If no
unassigned problem is available in the table, then the problem B is working on is subdi-
vided and its children are put in the table. Until work is subdivided, DIB maintains a fast
representation of the current search (just a recursion stack; we call it the “‘implicit’”’
representation); subdivided work is explicit in the table. After subdivision, B can usually
send some unassigned work to the requesting processor. Subdivision may have to be
repeated severa times before an unassigned problem is generated, but if it reaches a
trivial problem (not worth subdividing), or if it reaches the depth at which B itself is
searching, the request is not granted. B resumes its search after dealing with the incom-
ing request.

DIB is fault tolerant, in that work that B has given to A can still be accomplished
by B if there is nothing else worth doing and if A has not yet reported the result of that
work. This mechanism does not need timeouts or ‘‘ heartbeats’ to detect failure.

We have enhanced the DIB package so that it can achieve high efficiency for game
tree search. The principal enhancement is added flexibility given to the application level
for delaying evaluation of a game-tree node. That is, the application can refuse to gen-
erate additional children for a node but indicate that in the future it may again be willing
to do so. DIB does not attempt to generate children of such a node again until some
other child of that node has completed or a data update message has arrived at that node.

Game-tree search 3

To experiment with game playing, we have designed a two-level application struc-
ture. The game level is game-specific, knowing the rules for tic-tac-toe, Othello, or
checkers. The control level communicates both with DIB and the game level. It knows
the pattern of evauation for one of the algorithms we compared, namely, alpha-beta,
mandatory work first, principal-variation splitting, tree splitting, ER, or delay splitting.
Any of the game modules we implemented can be used with any of the control modules,
any such combination can be used with our enhanced DIB.

Since DIB distributes work, collects and reports results, and passes messages
between processors in a similar way for al the combinations, we can compare different
control modules in a fairly implementation-independent fashion. Previous comparisons
are questionable because each algorithm was implemented in a different parallel environ-
ment.

3. Parallel tree search algorithns

The best way to evaluate a parallel algorithm for a given problem is to measure the
extent in which it takes advantage of available processors. This idea can be formulated
asfollows:
time required by best sequential algorithm

time required by parallel algorithm

S
number of processors used

speedup S =

efficiency E =

It is not easy to achieve a ‘‘perfect’’ efficiency of 1.0. For a given sized problem,
efficiency tends to decrease as the number of processors increases. This relationship is
explained by Kumar and Rao [2] as resulting from an increase in the communication time
(sum of the time spent by all processors in communicating with neighboring processors,
waiting for messages, time in starvation, and so forth), while there is no change in com-
putation time (sum of the time spent by all the processors in useful computation). The
relationship between communication time (T,y,), computation time (T,), and efficiency
(E) isdescribed asfollows:

— TCD

Tcp +Tem

Kumar and Rao [2] define an isoefficiency function that shows how the problem
must grow with number of processors to achieve the same efficiency. They also mention
that since most problems have a sequential component (in depth-first search, it is one
node expansion), problem size must grow at least linearly to maintain a particular
efficiency.

Steinberg and Solomon [3] blame the failure to achieve perfect efficiency on three
typesof ‘‘loss”.

e Starvation loss: processors sitting idle while awaiting work to be given to them.

e Interferenceloss: time spent waiting for access to shared resources such as the set of
unfinished subproblems.

e Speculative loss: time spent performing unnecessary work, such as that performed by
a paralel agorithm before it is possible to determine that the work is necessary.

Game-tree search 4

Because a parallel agorithm must evaluate different nodes simultaneously, informa-
tion gained by evaluation of one node could come too late to cut off evaluation of
other nodes.

3.1. Al pha-beta

The alpha-beta algorithm is a sequential technique used to evaluate a game tree
efficiently. The nodes corresponding to the first player’s moves are called max nodes,
and the other nodes are called min nodes. The value of a max node is the maximum of
the value of its children, where as the value of a min node is the minimum of the value of
its children. The value of a leaf is determined by a game-specific static evaluator.
Alpha-beta ignores branches that are certain not to contribute to the value of the current
node. Figure 1 shows a sample game tree with a cutoff. Inthisfigure, node z, whichisa
max node, has two children, and itsfirst child is evaluated to 9. Therefore,

value(z) = max{9, value(y)}

where y is the other child of z. Now if the first child (we will often call it the eldest
child) of y isevauated to 7 then

value(y) = min{7, ...}

so the value of z is 9 regardiess of the value of y. It follows that the remaining children
of the node y need not be evaluated. Ignoring those children is called shallow cutoff.

Figure 2 illustrates another type of cutoff. After the eldest child of node z is
evaluated, we see that z's value will be greater than or equal to 9. This value is the
current lower bound in the alpha-beta algorithm. The value of a min node in the subtree
rooted at node y must be greater than 9 in order for the lower bound to change. There-
fore, when the algorithm reaches node w (a min node) and itsfirst child is evaluated to 7,
the evaluation of the remaining children can be avoided. This cutoff is called a deep cut-
off because the node w is more than one ply below the node z.

Following Fishburn [4], we present the following Pascal-like code of the alpha-beta
algorithm, as adapted from Knuth and Moore [5]:

9 AN
N
AN

O

7
Figure 1. Shallow cutoff

Game-tree search

Figure 2: Deep cutoff

function al phabeta(z : position; O, [: integer):integer;
var
Answer, Child, t, d : integer;
begin
determine the child positions Z4,..., Z4
if d = 0 then
return(St ati cVal ue(z))
else
begin
Answer = d ;
for Child := 1 to d do
begin
t := -al phabeta(Zcpjig, -B, -Answer);
if t > Answer then
Answer = t;
if Answer =[3 then
return(Answer); {cutoff}
end;
return(Answer) ;
end;
end.

The alpha-beta agorithm satisfies the following conditions [5]:

if negamax(z) < a then alphabeta(z, a, B) < a,
if a <negamax(z) < then alphabeta(z, a, 3) = negamax(z),
if negamax(z) = 3 then alphabeta(z, a , B) = 3.

These conditions imply that

Game-tree search 6

alphabeta(z, —,) = negamax(z) ,
which means that if the initial window [alpha, beta] is (—oo, o) then the a pha-beta ago-
rithm returns the same value as the negamax algorithm (straightforward tree-evaluation
algorithm that never cuts work off) [5].

The performance of the alpha-beta algorithm depends a great deal on the order in
which children of a node are expanded. If the children of each node in the game tree are
expanded in increasing order of their negamax values, then the largest number of cutoffs
will occur.

Knuth and Moore [5] introduced the idea of critical nodes in their analysis of the
best case of the alpha-beta agorithm, and Steinberg and Solomon [3] use the following
rules to determine the critical nodes:

e Theroot of the game tree isatype-1 node.

e The eldest child of atype-1 nodeisalso type-1. The remaining children are type-2.
e The eldest child of atype-2 node is atype-3 node.

e All children of atype-3 node are type-2.

e A nodeiscritical iff it isassigned a number by the above rules.

The critical nodes form a minimal subtree [3] of the game tree which, regardless of
the values of the terminal nodes, will always be examined by the alpha-beta algo-
rithm [5]. The number of terminal nodes in the minimal subtree of a complete d-ary tree
of height his

d [h/2] +d Lh/2] -1

If the tree is examined in increasing order of value, the apha-beta procedure examines
precisely the minimal subtree of the game tree. In short, alpha-beta examines about 2n/?
nodes, where negamax would examine n nodes.

3.2. Mandatory work first (MAF)

This algorithm was proposed by Akl, Barnard, and Doran as a paralel implementa-
tion of apha-beta without deep cutoffs. The name MWF was coined by Fishburn and
Finkel. MWEF evaluates critical nodes concurrently and then returns to evaluate other
nodes if needed [6,7]. When deep cutoffs are not considered in the search agorithm,
only type-1 and type-2 nodes are critical, as shown in Figure 3.

MWF evaluates type-1 nodes completely, but only evaluates type-2 nodes partially.
After the eldest child of a type-1 node (also type-1) has been evaluated, the remaining
children (all type-2) are completely evaluated only if the result of the partial evaluation is
not sufficient to cut them off. All evaluations currently alowed by MWF may be under-
taken simultaneously.

Akl, Barnard, and Doran [6] tested MWF with game trees of depth 4 and branching
factors of 5, 10, 15 and 20. They noticed that MWF has a better efficiency when the
game tree has a larger fanout, but found that the speedup reaches a plateau around six.
The total number of nodes visited as well as the number of terminal nodes examined
showed an increase with increasing number of processors, but the plateau was reached
much faster.

Fishburn [4] analyzed MWF for best-first and worst-first ordering of the game tree.
In the best-first ordering, MWF is almost optimal, since its efficiency is very closeto 1

Game-tree search 7

Figure 3: Minimal subtree when deep cutoffs are not considered

when alarge number of processorsisused. For the worst-first ordering, Fishburn used an
example game tree of degree 38 and processor tree of fanout 2 to predict that speedup for
MWF will satisfy

p0.93 <S< p0.96

where p isthe number of processors. Thisresult isamost as good as tree-splitting.

3.3. The tree-splitting algorithm

Fishburn proposed this method as a natural parallel way to implement the alpha-
beta algorithm. The tree-splitting algorithm splits the game tree into its subtrees at the
root node, and each subtree is assigned to a pool of processors for evaluation [4]. The
pool will evaluate the subtree in paralel if it has more than one processor. In other
words, the game tree is mapped to a processor tree. as shown in Figure 4. Here we have
a binary tree of processors with height two (connected by heavy arcs) mapped onto ater-
nary game tree. When there are more branches in the game tree than there are in the pro-
cessor tree, the extra game tree branches are queued and assigned to a processor when
one becomes available.

All interior processors in the tree of processors are both masters and slaves except
the root processor, which is only a master. All the leaf processors are slaves. When a
slave processor finishes the search of its assigned subtree, it reports the value computed
to its master. When a master processor receives a response from one of its daves, it
updates its alpha-beta window and informs the other working slaves of this new window.
The new window may allow the remaining work under the master to be cutoff. When all
the slaves have finished, either by cutoff or by reporting their values, the master proces-
sor can compute the value of its own position.

Fishburn [4] calculates the speedup for the tree-splitting algorithm for two different
orderings of the game tree. Worst-first ordering produces no alpha-beta cutoffs. It is
achieved by sorting all children of all nodes so that whenever the call alphabeta(z, a,)

Game-tree search 8

Figure 4: Processor tree mapped onto game tree

is made, the following relation holds among the children z ,..., z4:
a < —negamax(zq) <... < —negamax(zg) <

Since there are no cutoffs, there is no speculative loss, so tree splitting achieves practi-
cally perfect speedup.

Best-first ordering produces the maximum number of alpha-beta cutoffs. It is
achieved by sorting all children of al nodes so that:

negamax(z) = —negamax(z4) for al nodes z in the game tree.
Using this ordering, the tree-splitting algorithm gives S = O(p Y2y with p processors.

The tree-splitting algorithm gives S = O(pY2) with p processors when best-first ord-
ering [4] of the game tree is used.

3.4. Principal-variation (PV) splitting

PV splitting is a refinement of the tree-splitting algorithm [8]. It assumes that the
search tree is mapped onto an underlying tree of processors and that the game tree is
strongly ordered, that is, the first branch of each node is the best branch at least 70 per-
cent of the time and that the best move is in the first quarter of the branches being
searched 90 percent of the time.

The type-1 nodes are recursively evaluated until a given ply is reached, at which
point tree splitting is used. After the value of the principal variation (type-1) node is
backed up the tree, tree splitting is used to evaluate the remaining siblingsif they can not
be cut off.

There are two differences between PV splitting and MWF. First, PV splitting
requires a particular underlying processor structure, in contrast with the pool of proces-
sors used in MWF. Second, it waits for the search of type-1 nodes to end before it starts
evaluating the other nodes. This aspect of PV splitting ensures that the best available
value of a is passed to the other nodes of the tree.

Game-tree search 9

PV splitting was compared experimentally with the tree splitting agorithm using
trees of depth 4 and width 24. Experimenta results show that PV splitting outperforms
tree splitting, especially when a wider processor tree is used [8]. For example, when a
processor tree with both depth and width of 2 was used, tree-splitting examined 912
nodes, and PV splitting examined 648 nodes. But when the width of the processor tree
was changed to 8, tree-splitting and PV splitting examined 772 and 277 nodes respec-
tively.

3.5. The ER algorithm

This algorithm was developed by Steinberg and Solomon for parallel evaluation of
game trees. It is a sequential algorithm with a parallel implementation [3]. The nodesin
the game tree are divided into two groups, e-nodes and r-nodes. E-nodes will be fully
evaluated, and r-nodes will be refuted, that is, will have an estimated value. All children
of an e-node are evaluated, but as few as one child of an r-node needs to be examined.
Therefore e-nodes are more *‘costly’’ than r-nodes. Every internal node has exactly one
e-node child (e-child).

Any child of a node can be chosen as the e-child, but the child with the lowest
negamax value is the best choice [3].

To choose the e-child of anode z, ER evaluates the elder grandchildren (eldest chil-
dren of z’s children) in parallel, and chooses the child whose elder child has the largest
value. The e-child is then evaluated while avoiding re-evaluation of its oldest child,
since we just got itsvalue. The remaining children are refuted in order.

In the paralel implementation of ER, the elder grandchildren can be evaluated in
parallel because they represent mandatory work. Since these grandchildren are them-
selves e-nodes, their elder grandchildren can also be recursively evaluated in parallel.
These parallel evaluations are mandatory work, but if ER isto perform only the manda-
tory work, the remaining siblings of an e-node must be examined sequentially. To avoid
these sequential evaluations and thus starvation loss, ER uses the following two methods:

e Parallel refutation: After an e-child y of an e-node z is evaluated, refute y’s siblings
in paralel. This parallel evauation is likely to encounter lots of speculative loss.
This work is similar to the speculative work performed by MWF and PV splitting
algorithms.

e Multiple e-children: After an e-child of an e-node z is evaluated, choose the next best
child of z as a second e-child. If it happens that the first e-child is not actually the
best child of z (other children cannot be immediately refuted), we will have another
e-child that will hopefully help us cut off z’s other children. In general, after the first
e-child has been evaluated, ensure that z always has one active e-child.

Steinberg and Solomon compared ER to PV splitting. Sequential ER evaluates
more nodes than alpha-beta, but sequential PV splitting is identical to alpha-beta. For
this reason Steinberg and Solomon [3] used relative efficiency and relative speedup as
shown below to compare the two algorithms.

relative speedup
no. of processors used

relative efficiency =

Game-tree search 10

time required by parallel algorithm with 1 processor
time required by parallel algorithm

Experiments show that ER achieves twice the efficiency and speedup of the PV splitting
algorithm when used on sufficiently deep trees[3]. The average efficiency achieved by
ER using 16 processors for 7, 8, 9, and 10 ply trees are respectively 0.44, 0.52, 0.68, and
0.58. The corresponding efficiencies for PV splitting are 0.28, 0.31, 0.31, and 0.31. The
range of speedup for 7 to 9 ply trees using 16 processors are 7.1 to 10.9 for the ER algo-
rithm and 4.5 to 5.0 for the PV splitting algorithm. Steinberg and Solomon contribute
ER'’s higher efficiency to low starvation loss.

relative speedup=

3.6. Delay splitting

This algorithm delays the evaluation of each node until its eldest sibling is com-
pletely evaluated. Starvation loss is accepted in order to increase the number of cutoffs.
Evaluation delay occurs at every level for each node, thus making delay splitting dif-
ferent from PV splitting, in which delay of evaluation occurs only along the principle
variation route.

The following is Pascal-like code for delay splitting:

function Del aySplit(z : position; d, B): integer;
var d, i : integer;
val ue : array[1.. MAXW DTH] of integer;
begin
if (I ama | eaf processor) then
return(al phabeta(z, a, B));

determine the child positions Z;, ..., Z
O = -DelaySplit(z, —B, —-0);
if o= then
return(Q) ;
for i := 2 to d doinparalle
begin
value[i] := -DelaySplit(z, —f3, —0);

begincrit {critical region }
if value[i] > O then
a := valuel[i];
endcrit;
if o= then
return(A); { cutoff }
end;
end. { DelaySplit }

4. Experinental results

We have tested the above algorithms on a Sequent Symmetry with 26 cpus using an
unsorted tree of depth 9 and fanout of at most 15 (the fanout decreases by one at each
level) generated by the game tic-tac-toe. The agorithms tend to have more cutoffs with
a sorted tree, but are likely to have a higher efficiency with a worst-first sorted tree. Not
sorting at all gives us a comparison with a reasonable amount of cutoff and a reasonable
amount of parallelism. The relative efficiency comparisons are shown in Figure 5.
(Relative efficiency compares the parallel execution time to the sequential execution time
of the same algorithm in the same environment. The sequential execution times of all
algorithms we tested are quite similar.) For this particular test, the MWF algorithm

Game-tree search 11

achieved an amost perfect efficiency, followed by delay splitting and ER agorithms
with speedup of over 12 and 9 respectively, using 20 processors. We attribute our ability
to exceed a speedup of 6 with MWF to DIB’s parallelization environment and the tree
structure used in this experiment.

Figure 6 shows the ratio of the number of nodes examined by the algorithms using
different numbers of machines verses using one machine (sequential algorithm).

MWF

0.80 -
0.70 -
0.60 -

0.50 - ~ 4 ER

0.40 - ~alphabeta
>, TreeSplit10

0.30 - _IPVS10

0.20 |

0.10 -

OOO T T T T T

1 3 5 7 9 11 13 15 17 19 21

Figure 5: Efficiency vs number of machines

Game-tree search 12

3.00 -
TreeSplit10
— PVS10
+ alphabeta
2.00 -
~+* ER

OOO T T T T T T T T T T 1
1 3 5 7 9 11 13 15 17 19 21 23

Figure 6: Relative no. of nodes examined vs. number of machines

We have aso tested the algorithms using Othello with a 6x6 board. All algorithms
have almost the same relative efficiency, with delay splitting leading when fewer than six
processors are used. In this experiment, the speedup did not exceed 7 (Figure 7).

Game-tree search 13

1.00 4
0.90 |
0.80 A
0.70 -
0.60 -
0.50 -
ER
0.40 - « x Treesplit10
(o alphabeta
0.30 A 7 PVS10
MWF
0.20 - delaysplit
0.10 -
0-00 T T T T T T

1 3 5 7 9 11 13 15 17 19 21

Figure 7: Efficiency vs number of machines

5. Sorting nethods

We have compared the effects of four different sorting strategies on the search algo-
rithms. In al the strategies, an expansion depth parameter specifies how many levels
below a node are expanded in order to sort that node’s children. We set the expansion
depth parameter to 3 for the experiments reported here. That is, to sort a node z, we
expand the tree to three levels below z, evaluate the leaves statically, apply apha-beta to
those values to back them up to node z’ s children, then sort those children accordingly.

Another adjustable parameter is the sorting depth parameter, which specifies the
maximum depth of a node to which sorting may be applied. For some applications, like
tic-tac-toe with a 4x4 board, every level of the search tree may be profitably sorted, but
in other applications, sorting nodes beyond some level increases the total computation
time; sorting time outweighs cutoff benefits. For example, in Othello with a 6x6 board
and a search tree of nine levels, the best overall results are achieved when the sorting
depth parameter is set to six levels.

Game-tree search 14

Our first attempt at sorting was to sort only the children of the top node. This
regime, called ‘TN (top-node) sorting’’, applies to all the algorithms except ER, which
has its own internal sorting mechanism. There is no noticeable difference in number of
nodes, total time, or efficiency for any of the algorithms between TN and no sorting at
all.

Next we extended the sorting to include all nodes on the principal variation route.
We call this sorting regime *‘PVR sorting’’. Our tests of PVR sorting for PV spitting,
MWEF, and delay splitting show no significant improvement in total computation time.

In the third sorting regime, we sort at the top node and at every eldest child. We
call this sorting regime ‘*EC (eldest child) sorting’”’. EC sorting applies to MWF and
delay splitting, since only in these two algorithms do we suspend evaluation of all nodes
that are not eldest children until their eldest sibling is fully evaluated. Therefore having
the best child evaluated first should result in more cutoffs.

As expected, the results are much better for EC sorting than PRV sorting, as evi-
denced by tests with our tic-tac-toe and Othello applications. The total computation time
isamost reduced by half when fewer machines are used. The reduction in the efficiency,
expected due to the improvement in the sequential performance of the algorithms, is not
too bad. Figures 8, 9 and 10 show the number of nodes examined (in multiples of 1000),
total time and efficiency comparisons for MWF using the 4x4 tic-tac-toe game.

650.007

600.00 1
550.00 -
500.00 MWF(NoSorting)
450.00
400.00-

350.00

300.00-
250.001 MWF(EC-sorting)
200001 T
150.001
100.00 1
50.00 1

0.00

1 3 5 7 9 11131517 19 21
Figure 8: Nodes examined vs. number of machines

Game-tree search

400.00 MWF(NoSorting)

360.00 /\/\/\—/\

P e

320.00 /,ﬁ;*x#,/I/VIWF(EE:-sorting)
280.00 1

240001

200.00

160.00 1
SortTime(EC-sorting)

-+

120007 //,+~;\\+;

P Tk

80.001+ "
40.00-

0.00 T
1 3 5 7 9 11131517 19 21
Figure 9: Time vs. number of machines

1.00 1

.

-+ MWF(NoSorting)

¥

0.901

0.80
0.70
MWZF(EC-sorting)
0.60
0.50
0.40
0.30
0.20

0.101

0.00+—m———————————————
1 3 5 7 9 1113 1517 19 21

Figure 10: Efficiency vs. number of machines

15

Game-tree search 16

The last sorting regime is motivated by considering the type-2 nodesin MWF. The
eldest child of atype-2 node is evaluated before its other children are generated. There-
fore, if we also sort the children of a type-2 node there should be even more cutoffs. In
this sorting regime, in addition to sorting children of every eldest child, we aso sort at
every type-2 node. We call thisregime ** TT (type-two) sorting’".

TT sorting resulted in a vast improvement in total computation time and the number
of nodes generated. Unfortunately, a subtle bug in our implementation (since fixed)
renders all our conclusions about this sorting method inaccur ate; previous versions
of thisreport should not betrusted in thisregard. In fact, what we implemented did
not evaluate type-2 nodes as deeply as type-1 nodes, so far fewer nodes were
evaluated. So TT sorting (in thisreport) implies a different evaluation strategy as
well. The computation time is almost 30 times faster than the computation time using
EC sorting for a 4x4 tic-tac-toe game, even though about 95% of the time is spent on
sorting in the 1-machine (sequential) case. These results are shown in Figures 11 and 12.
The efficiency is drastically reduced because the work does not seem to be divided
evenly between the machines. Our assumption is that a better distribution of work can be
achieved by some adjustments to DIB itself so that this great speed can be accompanied
by abetter efficiency.

340.00 MWEF(EC-sorting)
320.00

300.00-

280.00

260.00 g
240.001
220.001,”
200.00
180.00
160.00 -
140.00
120.00
100.001 ., _
80.001 " MWF(TT-sorting)
60.00
40.00 _ _
20.00 SortTime(TT-sorting)

0.00

. SortTime(EC-sorting)

1 3 5 7 91113151719 21

Figure 11: Time vs. number of machines

Game-tree search 17

250.007
225007 /,f*\\\ ///// \\\\+777+"/+\\\

~+

MWF(EC-sorting)

200.001
175.00
150.00
125.00
100.00

75.00

50.00

25.007 MWF(TT-sorting)

—t —t
e

0.0F—F—————————
1 3 5 7 9 1113 1517 19 21

Figure 12: Nodes examined vs. number of machines

We also used three-level sort for TT sorting. The great speed in this method
allowed us to build a complete game tree for our experiments. In previous experiments
with tic-tac-toe, we built a search tree with nine levels; the complete search tree for a 4x4
board has 16 levels.

6. New results

We have new results based on adjustments made to MWF concerning the selection
of type-1 nodes. In dynamic MWF (DMWF), we decide which children of atype-1 node
to fully investigate not by taking the first (as in MWF), but by taking all those whose
static value is above the 90th percentile of its siblings. To our knowledge, no one has
tried algorithms that dynamically adjust their width of full evaluation based on evidence
provided in the tree. This adjustment can also be made to other algorithms like delay
splitting and ER.

We compared MWF and DMWF under EC sorting for a tic-tac-toe tree with a 4x4
board. Figure 13 shows the comparison of the total time (including communication and
idle time) between MWF and DMWF. DMWEF is about one-third faster than MWF. This
speed is achieved with even less sorting time because it generates fewer nodes, as
demonstrated in Figure 14 (number of nodes are in multiples of 1000). Thereis aso an
improvement in the efficiency (Figure 15).

Game-tree search

350.00 ime(MWF)
300.00

TotalTime(DMWF)
250.00-

7

200.00

150.00 1
SortTime(MWF)

—+

100.00{

4

50.00

e -+

SortTime(DMWF)

0.00+———————————
1 3 5 7 9 11 131517 19 21

Figure 13: Time vs. number of machines
250.00
225001 .
200.007
175.00
150.00
12500{ ~ — ————_ DMWF
100.00
75.001
50.00 1
25.001

0.00+—m———————————————
1 3 5 7 9 1113 15 17 19 21

Figure 14: Nodes examined vs. number of machines

Game-tree search 19

1.00
0.901
0.801
0.707
0.601

0.501
0.40
0.301
0.201
0.101

000
1 3 5 7 9 11131517 19 21
Figure 15: Efficiency vs number of machines
We aso compared MWF and DMWF under EC sorting for Othello with a 6x6
board. Since Othello is a more complicated game than tic-tac-toe, the sorting depth

parameter was set to 6 levels, as mentioned above. The results of this experiment, shown
in Figures 16, 17 and 18, are similar to the results from tic-tac-toe.

Game-tree search

1500.00 TotalTime(MWF)
1400.001

1300.001
1200.001
1100.001
1000.00
900.00
800.00
700.00

otalTime(DMWF)

200.00 SortTime(MWF)
SortTime(DMWF)

Figure 16: Time vs. number of machines

MWEF

¥

0.00

1 3 5 7 91113151719 21

Figure 17: Nodes examined vs. number of machines

20

Game-tree search 21

090\
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -

0.30 -

0.20 -

0.10 -

O-OO T T T T T T T T T 1
1 3 5 7 9 11 13 15 17 19 21

Figure 18: Efficiency vs number of machines

7. Future work

With enhancements made to DIB for achieving high efficiency in game tree search,
we have developed an environment in which we can test different algorithms in a con-
sistent way. These algorithms have been examined using a test suite of problems taken
from game trees for checkers, tic-tac-toe, and Othello. These games are coded indepen-
dently from the search algorithms, thus contributing to the consistency of the experiment.

We are currently testing these algorithms on a 26-processor Sequent Symmetry
machine. Our future plans include the use of a KSR multicomputer with 64 cpus to
examine the search algorithms with alarger number of processors.

We will also experiment with worst-case sorting, not because it would be used in
practice, but to see how each algorithm is sensitive to sorting.

Game-tree search 22

Ref er ences

1.

Raphael Finkel and Udi Manber, ‘*DIB — A Distributed Implementation of Back-
tracking,”” ACM Transactions on Programming Languages and Systems 9(2) pp.
235-256 (April 1987).

Vipin Kumar and V. Nageshwara Rao, Scalable Parallel Formation of Depth-First
Search.

Igor Steinberg and Marvin Solomon, Searching Gametree in Parallel.

John Philip Fishburn, ‘‘Analysis of speed up in Distributed Algorithms,”” Ph.D.
Thesis, Department of Computer Science, University of Wisconsin-Madison
(1981).

D. V. Knuth and R. W. Moore, ‘*An analysis of alpha-beta prunning,”’ Artificial
Intelligence 6 pp. 293-326 (1975).

Selim G. Akl, David T. Barnard, and Raph J. Doran, ‘‘Desing, Analysis, and
Implementation of a Paralel Tree Search Algorithm,”” IEEE PAMI-4(2)(March
1982).

R. A. Finkel and J. P. Fishburn, **Parallelism in alpha-beta search,”’ Artificial Intel-
ligence 19 pp. 89-106 (1982).

T. A. Mardand and M. Campbell, ‘‘Parallel Search of Strongly Ordered Game
Trees,”” Computing Surveys 14(4) pp. 533-551 (December 1982).

