
A comparison of some parallel game-tree search algorithms
(Revised version)

Jaleh Rezaie (jrezaie@ms.uky.edu)
Raphael Finkel (raphael@ms.uky.edu)

Department of Computer Science
University of Kentucky

Lexington, KY 40506-0027

Abstract
This paper experimentally compares several sequential and parallel game-tree

search methods: alpha-beta, mandatory work first, principal-variation splitting, tree split-
ting, ER, and delay splitting. All have been implemented in a common environment pro-
vided by the DIB package.

Key words: game trees, heuristic search, alpha-beta

1. Introduction
In this paper we compare some of the parallel methods for searching large game

trees. These trees arise in the area of artificial intelligence and are closely related to trees
searched in other application areas. Exhaustive search of a tree is prohibitively expen-
sive. There are several ways to ameliorate the problem.

� Search only to a given depth.
� Apply heuristics, such as the alpha-beta method, to cut off fruitless search.
� Apply many computers simultaneously in pursuing the search.

We concentrate on distributed variants of the alpha-beta heuristic that try to avoid search-
ing unnecessary parts of the tree while keeping many processors fruitfully busy.

The algorithms we compare are alpha-beta, mandatory work first, principal-
variation splitting, tree splitting, ER, and delay splitting. To be able to make a fair com-
parison between the above algorithms, we have extended the DIB package [1] to use it as
a framework for implementing all the algorithms we compare.

Section 2 describes the DIB package. Section 3 introduces the alpha-beta pruning
and briefly describes the algorithms used in the experiment. Section 4 presents experi-
mental results that compare the algorithms. Section 5 compares the effects of several
sorting strategies on the above algorithms. Section 6 illustrates the new results achieved
by adjustments made to MWF algorithm. Section 7 summarizes the results, and details
remaining parts of this experiment.

2. DIB — A distributed implementation of backtrack-
ing

In this section we describe how DIB works and how we use it to implement dif-
ferent tree-search algorithms.

Game-tree search 2

2.1. Description of DIB
DIB is a multi-purpose package developed by Finkel and Manber for tree-traversal

problems [1]. It allows applications such as backtrack and branch-and-bound to be
implemented on a multicomputer. DIB’s requirements from the distributed operating
system are minimal. The machines must be connected by a network that supports a
message-passing mechanism; each machine must be able to communicate, not neces-
sarily directly, with all other machines. Our implementation of DIB is programmed in C
and runs in the Unix environment across machines connected by an internet or on a Unix
multiprocessor.

The application program must specify the root of the problem tree, how to generate
children, and calculations needed at each node. It can also optionally specify how to
generate values of a tree node from combining its children’s values and how to spread
information either globally or locally throughout the tree.

DIB divides the problem into subproblems and assigns them to any number of pro-
cessors (potentially nonhomogeneous machines in a network) dynamically. Each proces-
sor maintains a table of explicit work, recording all the problems that have been sent to
the processor, have been generated by the processor itself, and/or have been sent to other
processors. Each processor is responsible for the work in its table. Each item of work
(represented by a node in the backtrack tree, which stands as well for all its descendents)
is labeled by which processor, if any, has been assigned that work.

When a processor A is finished with a problem and has reported its result to the pro-
cessor that gave it that problem, it will take the first (in an inorder traversal of the tree)
unassigned problem from its table. If no unassigned problem is available, A sends a
work request message to another processor (or processors), selected at random from A ’s
peers, repeatedly (with some delay) until new work arrives.

A processor B that receives a work request message interrupts its own search and
trys to respond by sending some work to the requesting processor from its table. If no
unassigned problem is available in the table, then the problem B is working on is subdi-
vided and its children are put in the table. Until work is subdivided, DIB maintains a fast
representation of the current search (just a recursion stack; we call it the ‘‘implicit’’
representation); subdivided work is explicit in the table. After subdivision, B can usually
send some unassigned work to the requesting processor. Subdivision may have to be
repeated several times before an unassigned problem is generated, but if it reaches a
trivial problem (not worth subdividing), or if it reaches the depth at which B itself is
searching, the request is not granted. B resumes its search after dealing with the incom-
ing request.

DIB is fault tolerant, in that work that B has given to A can still be accomplished
by B if there is nothing else worth doing and if A has not yet reported the result of that
work. This mechanism does not need timeouts or ‘‘heartbeats’’ to detect failure.

We have enhanced the DIB package so that it can achieve high efficiency for game
tree search. The principal enhancement is added flexibility given to the application level
for delaying evaluation of a game-tree node. That is, the application can refuse to gen-
erate additional children for a node but indicate that in the future it may again be willing
to do so. DIB does not attempt to generate children of such a node again until some
other child of that node has completed or a data update message has arrived at that node.

Game-tree search 3

To experiment with game playing, we have designed a two-level application struc-
ture. The game level is game-specific, knowing the rules for tic-tac-toe, Othello, or
checkers. The control level communicates both with DIB and the game level. It knows
the pattern of evaluation for one of the algorithms we compared, namely, alpha-beta,
mandatory work first, principal-variation splitting, tree splitting, ER, or delay splitting.
Any of the game modules we implemented can be used with any of the control modules;
any such combination can be used with our enhanced DIB.

Since DIB distributes work, collects and reports results, and passes messages
between processors in a similar way for all the combinations, we can compare different
control modules in a fairly implementation-independent fashion. Previous comparisons
are questionable because each algorithm was implemented in a different parallel environ-
ment.

3. Parallel tree search algorithms
The best way to evaluate a parallel algorithm for a given problem is to measure the

extent in which it takes advantage of available processors. This idea can be formulated
as follows:

speedup S =
time required by parallel algorithm

time required by best sequential algorithm
� ���

efficiency E =
number of processors used

S
���

It is not easy to achieve a ‘‘perfect’’ efficiency of 1.0. For a given sized problem,
efficiency tends to decrease as the number of processors increases. This relationship is
explained by Kumar and Rao [2] as resulting from an increase in the communication time
(sum of the time spent by all processors in communicating with neighboring processors,
waiting for messages, time in starvation, and so forth), while there is no change in com-
putation time (sum of the time spent by all the processors in useful computation). The
relationship between communication time (Tcm), computation time (Tcp), and efficiency
(E) is described as follows:

E =
Tcp +Tcm

Tcp
���������������

Kumar and Rao [2] define an isoefficiency function that shows how the problem
must grow with number of processors to achieve the same efficiency. They also mention
that since most problems have a sequential component (in depth-first search, it is one
node expansion), problem size must grow at least linearly to maintain a particular
efficiency.

Steinberg and Solomon [3] blame the failure to achieve perfect efficiency on three
types of ‘‘loss’’.
� Starvation loss: processors sitting idle while awaiting work to be given to them.
� Interference loss: time spent waiting for access to shared resources such as the set of

unfinished subproblems.
� Speculative loss: time spent performing unnecessary work, such as that performed by

a parallel algorithm before it is possible to determine that the work is necessary.

Game-tree search 4

Because a parallel algorithm must evaluate different nodes simultaneously, informa-
tion gained by evaluation of one node could come too late to cut off evaluation of
other nodes.

3.1. Alpha-beta
The alpha-beta algorithm is a sequential technique used to evaluate a game tree

efficiently. The nodes corresponding to the first player’s moves are called max nodes,
and the other nodes are called min nodes. The value of a max node is the maximum of
the value of its children, where as the value of a min node is the minimum of the value of
its children. The value of a leaf is determined by a game-specific static evaluator.
Alpha-beta ignores branches that are certain not to contribute to the value of the current
node. Figure 1 shows a sample game tree with a cutoff. In this figure, node z , which is a
max node, has two children, and its first child is evaluated to 9. Therefore,

value(z) = max{9, value(y)}

where y is the other child of z . Now if the first child (we will often call it the eldest
child) of y is evaluated to 7 then

value(y) = min{7, ...}

so the value of z is 9 regardless of the value of y . It follows that the remaining children
of the node y need not be evaluated. Ignoring those children is called shallow cutoff.

Figure 2 illustrates another type of cutoff. After the eldest child of node z is
evaluated, we see that z ’s value will be greater than or equal to 9. This value is the
current lower bound in the alpha-beta algorithm. The value of a min node in the subtree
rooted at node y must be greater than 9 in order for the lower bound to change. There-
fore, when the algorithm reaches node w (a min node) and its first child is evaluated to 7,
the evaluation of the remaining children can be avoided. This cutoff is called a deep cut-
off because the node w is more than one ply below the node z .

Following Fishburn [4], we present the following Pascal-like code of the alpha-beta
algorithm, as adapted from Knuth and Moore [5]:

z

y
9

7
Figure 1: Shallow cutoff

Game-tree search 5

z

y

x

w

9

7
Figure 2: Deep cutoff

function alphabeta(z : position; α, β : integer):integer;
var

Answer, Child, t, d : integer;
begin

determine the child positions z 1,..., zd
if d = 0 then

return(StaticValue(z))
else

begin
Answer := α ;
for Child := 1 to d do

begin
t := -alphabeta(zChild , -β, -Answer);
if t > Answer then

Answer := t;
if Answer ≥ β then

return(Answer); {cutoff}
end;

return(Answer);
end;

end.

The alpha-beta algorithm satisfies the following conditions [5]:

if negamax(z) ≤ α then alphabeta(z , α, β) ≤ α,
if α < negamax(z) < β then alphabeta(z , α, β) = negamax(z),
if negamax(z) ≥ β then alphabeta(z , α , β) ≥ β.

These conditions imply that

Game-tree search 6

alphabeta(z , −∞, ∞) = negamax(z) ,

which means that if the initial window [alpha, beta] is (−∞, ∞) then the alpha-beta algo-
rithm returns the same value as the negamax algorithm (straightforward tree-evaluation
algorithm that never cuts work off) [5].

The performance of the alpha-beta algorithm depends a great deal on the order in
which children of a node are expanded. If the children of each node in the game tree are
expanded in increasing order of their negamax values, then the largest number of cutoffs
will occur.

Knuth and Moore [5] introduced the idea of critical nodes in their analysis of the
best case of the alpha-beta algorithm, and Steinberg and Solomon [3] use the following
rules to determine the critical nodes:

� The root of the game tree is a type-1 node.� The eldest child of a type-1 node is also type-1. The remaining children are type-2.� The eldest child of a type-2 node is a type-3 node.� All children of a type-3 node are type-2.� A node is critical iff it is assigned a number by the above rules.

The critical nodes form a minimal subtree [3] of the game tree which, regardless of
the values of the terminal nodes, will always be examined by the alpha-beta algo-
rithm [5]. The number of terminal nodes in the minimal subtree of a complete d-ary tree
of height h is

d
�
h /2� +d

�
h /2� −1

If the tree is examined in increasing order of value, the alpha-beta procedure examines
precisely the minimal subtree of the game tree. In short, alpha-beta examines about 2n 1/2

nodes, where negamax would examine n nodes.

3.2. Mandatory work first (MWF)
This algorithm was proposed by Akl, Barnard, and Doran as a parallel implementa-

tion of alpha-beta without deep cutoffs. The name MWF was coined by Fishburn and
Finkel. MWF evaluates critical nodes concurrently and then returns to evaluate other
nodes if needed [6, 7]. When deep cutoffs are not considered in the search algorithm,
only type-1 and type-2 nodes are critical, as shown in Figure 3.

MWF evaluates type-1 nodes completely, but only evaluates type-2 nodes partially.
After the eldest child of a type-1 node (also type-1) has been evaluated, the remaining
children (all type-2) are completely evaluated only if the result of the partial evaluation is
not sufficient to cut them off. All evaluations currently allowed by MWF may be under-
taken simultaneously.

Akl, Barnard, and Doran [6] tested MWF with game trees of depth 4 and branching
factors of 5, 10, 15 and 20. They noticed that MWF has a better efficiency when the
game tree has a larger fanout, but found that the speedup reaches a plateau around six.
The total number of nodes visited as well as the number of terminal nodes examined
showed an increase with increasing number of processors, but the plateau was reached
much faster.

Fishburn [4] analyzed MWF for best-first and worst-first ordering of the game tree.
In the best-first ordering, MWF is almost optimal, since its efficiency is very close to 1

Game-tree search 7

1

1

1

1 1 1

1 1

1

2 2

2 2

2 2 2 2 2 21

Figure 3: Minimal subtree when deep cutoffs are not considered

when a large number of processors is used. For the worst-first ordering, Fishburn used an
example game tree of degree 38 and processor tree of fanout 2 to predict that speedup for
MWF will satisfy

p 0.93 ≤ S ≤ p 0.96

where p is the number of processors. This result is almost as good as tree-splitting.

3.3. The tree-splitting algorithm
Fishburn proposed this method as a natural parallel way to implement the alpha-

beta algorithm. The tree-splitting algorithm splits the game tree into its subtrees at the
root node, and each subtree is assigned to a pool of processors for evaluation [4]. The
pool will evaluate the subtree in parallel if it has more than one processor. In other
words, the game tree is mapped to a processor tree. as shown in Figure 4. Here we have
a binary tree of processors with height two (connected by heavy arcs) mapped onto a ter-
nary game tree. When there are more branches in the game tree than there are in the pro-
cessor tree, the extra game tree branches are queued and assigned to a processor when
one becomes available.

All interior processors in the tree of processors are both masters and slaves except
the root processor, which is only a master. All the leaf processors are slaves. When a
slave processor finishes the search of its assigned subtree, it reports the value computed
to its master. When a master processor receives a response from one of its slaves, it
updates its alpha-beta window and informs the other working slaves of this new window.
The new window may allow the remaining work under the master to be cutoff. When all
the slaves have finished, either by cutoff or by reporting their values, the master proces-
sor can compute the value of its own position.

Fishburn [4] calculates the speedup for the tree-splitting algorithm for two different
orderings of the game tree. Worst-first ordering produces no alpha-beta cutoffs. It is
achieved by sorting all children of all nodes so that whenever the call alphabeta(z , α, β)

Game-tree search 8

Figure 4: Processor tree mapped onto game tree

is made, the following relation holds among the children z 1 ,..., zd :

α < −negamax(z 1) <... < −negamax(zd) < β

Since there are no cutoffs, there is no speculative loss, so tree splitting achieves practi-
cally perfect speedup.

Best-first ordering produces the maximum number of alpha-beta cutoffs. It is
achieved by sorting all children of all nodes so that:

negamax(z) = −negamax(z 1) for all nodes z in the game tree.

Using this ordering, the tree-splitting algorithm gives S = O(p 1/2) with p processors.

The tree-splitting algorithm gives S = O(p 1/2) with p processors when best-first ord-
ering [4] of the game tree is used.

3.4. Principal-variation (PV) splitting
PV splitting is a refinement of the tree-splitting algorithm [8]. It assumes that the

search tree is mapped onto an underlying tree of processors and that the game tree is
strongly ordered, that is, the first branch of each node is the best branch at least 70 per-
cent of the time and that the best move is in the first quarter of the branches being
searched 90 percent of the time.

The type-1 nodes are recursively evaluated until a given ply is reached, at which
point tree splitting is used. After the value of the principal variation (type-1) node is
backed up the tree, tree splitting is used to evaluate the remaining siblings if they can not
be cut off.

There are two differences between PV splitting and MWF. First, PV splitting
requires a particular underlying processor structure, in contrast with the pool of proces-
sors used in MWF. Second, it waits for the search of type-1 nodes to end before it starts
evaluating the other nodes. This aspect of PV splitting ensures that the best available
value of α is passed to the other nodes of the tree.

Game-tree search 9

PV splitting was compared experimentally with the tree splitting algorithm using
trees of depth 4 and width 24. Experimental results show that PV splitting outperforms
tree splitting, especially when a wider processor tree is used [8]. For example, when a
processor tree with both depth and width of 2 was used, tree-splitting examined 912
nodes, and PV splitting examined 648 nodes. But when the width of the processor tree
was changed to 8, tree-splitting and PV splitting examined 772 and 277 nodes respec-
tively.

3.5. The ER algorithm
This algorithm was developed by Steinberg and Solomon for parallel evaluation of

game trees. It is a sequential algorithm with a parallel implementation [3]. The nodes in
the game tree are divided into two groups, e-nodes and r-nodes. E-nodes will be fully
evaluated, and r-nodes will be refuted, that is, will have an estimated value. All children
of an e-node are evaluated, but as few as one child of an r-node needs to be examined.
Therefore e-nodes are more ‘‘costly’’ than r-nodes. Every internal node has exactly one
e-node child (e-child).

Any child of a node can be chosen as the e-child, but the child with the lowest
negamax value is the best choice [3].

To choose the e-child of a node z , ER evaluates the elder grandchildren (eldest chil-
dren of z ’s children) in parallel, and chooses the child whose elder child has the largest
value. The e-child is then evaluated while avoiding re-evaluation of its oldest child,
since we just got its value. The remaining children are refuted in order.

In the parallel implementation of ER, the elder grandchildren can be evaluated in
parallel because they represent mandatory work. Since these grandchildren are them-
selves e-nodes, their elder grandchildren can also be recursively evaluated in parallel.
These parallel evaluations are mandatory work, but if ER is to perform only the manda-
tory work, the remaining siblings of an e-node must be examined sequentially. To avoid
these sequential evaluations and thus starvation loss, ER uses the following two methods:
� Parallel refutation: After an e-child y of an e-node z is evaluated, refute y ’s siblings

in parallel. This parallel evaluation is likely to encounter lots of speculative loss.
This work is similar to the speculative work performed by MWF and PV splitting
algorithms.

� Multiple e-children: After an e-child of an e-node z is evaluated, choose the next best
child of z as a second e-child. If it happens that the first e-child is not actually the
best child of z (other children cannot be immediately refuted), we will have another
e-child that will hopefully help us cut off z ’s other children. In general, after the first
e-child has been evaluated, ensure that z always has one active e-child.

Steinberg and Solomon compared ER to PV splitting. Sequential ER evaluates
more nodes than alpha-beta, but sequential PV splitting is identical to alpha-beta. For
this reason Steinberg and Solomon [3] used relative efficiency and relative speedup as
shown below to compare the two algorithms.

relative efficiency =
no. of processors used

relative speedup
���������������������������������������

Game-tree search 10

relative speedup =
time required by parallel algorithm

time required by parallel algorithm with 1 processor
���

Experiments show that ER achieves twice the efficiency and speedup of the PV splitting
algorithm when used on sufficiently deep trees [3]. The average efficiency achieved by
ER using 16 processors for 7, 8, 9, and 10 ply trees are respectively 0.44, 0.52, 0.68, and
0.58. The corresponding efficiencies for PV splitting are 0.28, 0.31, 0.31, and 0.31. The
range of speedup for 7 to 9 ply trees using 16 processors are 7.1 to 10.9 for the ER algo-
rithm and 4.5 to 5.0 for the PV splitting algorithm. Steinberg and Solomon contribute
ER’s higher efficiency to low starvation loss.

3.6. Delay splitting
This algorithm delays the evaluation of each node until its eldest sibling is com-

pletely evaluated. Starvation loss is accepted in order to increase the number of cutoffs.
Evaluation delay occurs at every level for each node, thus making delay splitting dif-
ferent from PV splitting, in which delay of evaluation occurs only along the principle
variation route.

The following is Pascal-like code for delay splitting:
function DelaySplit(z : position; α, β): integer;

var d, i : integer;
value : array[1..MAXWIDTH] of integer;

begin
if (I am a leaf processor) then

return(alphabeta(z, α, β));
determine the child positions z 1, ..., zd
α = -DelaySplit(z 1, −β, −α);
if α ≥ β then

return(α);
for i := 2 to d do in parallel

begin
value[i] := -DelaySplit(zi , −β, −α);
begincrit {critical region }

if value[i] > α then
α := value[i];

endcrit;
if α ≥ β then

return(α); { cutoff }
end;

end. { DelaySplit }

4. Experimental results
We have tested the above algorithms on a Sequent Symmetry with 26 cpus using an

unsorted tree of depth 9 and fanout of at most 15 (the fanout decreases by one at each
level) generated by the game tic-tac-toe. The algorithms tend to have more cutoffs with
a sorted tree, but are likely to have a higher efficiency with a worst-first sorted tree. Not
sorting at all gives us a comparison with a reasonable amount of cutoff and a reasonable
amount of parallelism. The relative efficiency comparisons are shown in Figure 5.
(Relative efficiency compares the parallel execution time to the sequential execution time
of the same algorithm in the same environment. The sequential execution times of all
algorithms we tested are quite similar.) For this particular test, the MWF algorithm

Game-tree search 11

achieved an almost perfect efficiency, followed by delay splitting and ER algorithms
with speedup of over 12 and 9 respectively, using 20 processors. We attribute our ability
to exceed a speedup of 6 with MWF to DIB’s parallelization environment and the tree
structure used in this experiment.

Figure 6 shows the ratio of the number of nodes examined by the algorithms using
different numbers of machines verses using one machine (sequential algorithm).

alphabeta

MWF

delaysplit

TreeSplit10

ER

PVS10

1 3 5 7 9 11 13 15 17 19 21
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 5: Efficiency vs number of machines

Game-tree search 12

alphabeta

delaysplit

TreeSplit10
PVS10

MWF

ER

1 3 5 7 9 11 13 15 17 19 21 23

0.00

1.00

2.00

3.00

Figure 6: Relative no. of nodes examined vs. number of machines

We have also tested the algorithms using Othello with a 6×6 board. All algorithms
have almost the same relative efficiency, with delay splitting leading when fewer than six
processors are used. In this experiment, the speedup did not exceed 7 (Figure 7).

Game-tree search 13

alphabeta

MWF

delaysplit

TreeSplit10

ER

PVS10

1 3 5 7 9 11 13 15 17 19 21
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 7: Efficiency vs number of machines

5. Sorting methods
We have compared the effects of four different sorting strategies on the search algo-

rithms. In all the strategies, an expansion depth parameter specifies how many levels
below a node are expanded in order to sort that node’s children. We set the expansion
depth parameter to 3 for the experiments reported here. That is, to sort a node z , we
expand the tree to three levels below z , evaluate the leaves statically, apply alpha-beta to
those values to back them up to node z ’s children, then sort those children accordingly.

Another adjustable parameter is the sorting depth parameter, which specifies the
maximum depth of a node to which sorting may be applied. For some applications, like
tic-tac-toe with a 4×4 board, every level of the search tree may be profitably sorted, but
in other applications, sorting nodes beyond some level increases the total computation
time; sorting time outweighs cutoff benefits. For example, in Othello with a 6×6 board
and a search tree of nine levels, the best overall results are achieved when the sorting
depth parameter is set to six levels.

Game-tree search 14

Our first attempt at sorting was to sort only the children of the top node. This
regime, called ‘‘TN (top-node) sorting’’, applies to all the algorithms except ER, which
has its own internal sorting mechanism. There is no noticeable difference in number of
nodes, total time, or efficiency for any of the algorithms between TN and no sorting at
all.

Next we extended the sorting to include all nodes on the principal variation route.
We call this sorting regime ‘‘PVR sorting’’. Our tests of PVR sorting for PV spitting,
MWF, and delay splitting show no significant improvement in total computation time.

In the third sorting regime, we sort at the top node and at every eldest child. We
call this sorting regime ‘‘EC (eldest child) sorting’’. EC sorting applies to MWF and
delay splitting, since only in these two algorithms do we suspend evaluation of all nodes
that are not eldest children until their eldest sibling is fully evaluated. Therefore having
the best child evaluated first should result in more cutoffs.

As expected, the results are much better for EC sorting than PRV sorting, as evi-
denced by tests with our tic-tac-toe and Othello applications. The total computation time
is almost reduced by half when fewer machines are used. The reduction in the efficiency,
expected due to the improvement in the sequential performance of the algorithms, is not
too bad. Figures 8, 9 and 10 show the number of nodes examined (in multiples of 1000),
total time and efficiency comparisons for MWF using the 4×4 tic-tac-toe game.

MWF(EC-sorting)

MWF(NoSorting)

1 3 5 7 9 11 13 15 17 19 21
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

Figure 8: Nodes examined vs. number of machines

Game-tree search 15

MWF(NoSorting)

MWF(EC-sorting)

SortTime(EC-sorting)

1 3 5 7 9 11 13 15 17 19 21
0.00

40.00

80.00

120.00

160.00

200.00

240.00

280.00

320.00

360.00

400.00

Figure 9: Time vs. number of machines

MWF(EC-sorting)

MWF(NoSorting)

1 3 5 7 9 11 13 15 17 19 21
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 10: Efficiency vs. number of machines

Game-tree search 16

The last sorting regime is motivated by considering the type-2 nodes in MWF. The
eldest child of a type-2 node is evaluated before its other children are generated. There-
fore, if we also sort the children of a type-2 node there should be even more cutoffs. In
this sorting regime, in addition to sorting children of every eldest child, we also sort at
every type-2 node. We call this regime ‘‘TT (type-two) sorting’’.

TT sorting resulted in a vast improvement in total computation time and the number
of nodes generated. Unfortunately, a subtle bug in our implementation (since fixed)
renders all our conclusions about this sorting method inaccurate; previous versions
of this report should not be trusted in this regard. In fact, what we implemented did
not evaluate type-2 nodes as deeply as type-1 nodes, so far fewer nodes were
evaluated. So TT sorting (in this report) implies a different evaluation strategy as
well. The computation time is almost 30 times faster than the computation time using
EC sorting for a 4×4 tic-tac-toe game, even though about 95% of the time is spent on
sorting in the 1-machine (sequential) case. These results are shown in Figures 11 and 12.
The efficiency is drastically reduced because the work does not seem to be divided
evenly between the machines. Our assumption is that a better distribution of work can be
achieved by some adjustments to DIB itself so that this great speed can be accompanied
by a better efficiency.

MWF(TT-sorting)

MWF(EC-sorting)

SortTime(EC-sorting)

SortTime(TT-sorting)

1 3 5 7 9 11 13 15 17 19 21
0.00

20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00
220.00
240.00
260.00
280.00
300.00
320.00
340.00

Figure 11: Time vs. number of machines

Game-tree search 17

MWF(EC-sorting)

MWF(TT-sorting)

1 3 5 7 9 11 13 15 17 19 21
0.00

25.00

50.00

75.00

100.00

125.00

150.00

175.00

200.00

225.00

250.00

Figure 12: Nodes examined vs. number of machines

We also used three-level sort for TT sorting. The great speed in this method
allowed us to build a complete game tree for our experiments. In previous experiments
with tic-tac-toe, we built a search tree with nine levels; the complete search tree for a 4×4
board has 16 levels.

6. New results
We have new results based on adjustments made to MWF concerning the selection

of type-1 nodes. In dynamic MWF (DMWF), we decide which children of a type-1 node
to fully investigate not by taking the first (as in MWF), but by taking all those whose
static value is above the 90th percentile of its siblings. To our knowledge, no one has
tried algorithms that dynamically adjust their width of full evaluation based on evidence
provided in the tree. This adjustment can also be made to other algorithms like delay
splitting and ER.

We compared MWF and DMWF under EC sorting for a tic-tac-toe tree with a 4×4
board. Figure 13 shows the comparison of the total time (including communication and
idle time) between MWF and DMWF. DMWF is about one-third faster than MWF. This
speed is achieved with even less sorting time because it generates fewer nodes, as
demonstrated in Figure 14 (number of nodes are in multiples of 1000). There is also an
improvement in the efficiency (Figure 15).

Game-tree search 18

TotalTime(DMWF)

SortTime(DMWF)

TotalTime(MWF)

SortTime(MWF)

1 3 5 7 9 11 13 15 17 19 21
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Figure 13: Time vs. number of machines

MWF

DMWF

1 3 5 7 9 11 13 15 17 19 21
0.00

25.00

50.00

75.00

100.00

125.00

150.00

175.00

200.00

225.00

250.00

Figure 14: Nodes examined vs. number of machines

Game-tree search 19

MWF

DMWF

1 3 5 7 9 11 13 15 17 19 21
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 15: Efficiency vs number of machines

We also compared MWF and DMWF under EC sorting for Othello with a 6×6
board. Since Othello is a more complicated game than tic-tac-toe, the sorting depth
parameter was set to 6 levels, as mentioned above. The results of this experiment, shown
in Figures 16, 17 and 18, are similar to the results from tic-tac-toe.

Game-tree search 20

TotalTime(DMWF)

SortTime(DMWF)

TotalTime(MWF)

SortTime(MWF)

1 3 5 7 9 11 13 15 17 19 21
0.00

100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

1000.00
1100.00
1200.00
1300.00
1400.00
1500.00

Figure 16: Time vs. number of machines

MWF

DMWF

1 3 5 7 9 11 13 15 17 19 21
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Figure 17: Nodes examined vs. number of machines

Game-tree search 21

MWF

DMWF

1 3 5 7 9 11 13 15 17 19 21
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 18: Efficiency vs number of machines

7. Future work
With enhancements made to DIB for achieving high efficiency in game tree search,

we have developed an environment in which we can test different algorithms in a con-
sistent way. These algorithms have been examined using a test suite of problems taken
from game trees for checkers, tic-tac-toe, and Othello. These games are coded indepen-
dently from the search algorithms, thus contributing to the consistency of the experiment.

We are currently testing these algorithms on a 26-processor Sequent Symmetry
machine. Our future plans include the use of a KSR multicomputer with 64 cpus to
examine the search algorithms with a larger number of processors.

We will also experiment with worst-case sorting, not because it would be used in
practice, but to see how each algorithm is sensitive to sorting.

Game-tree search 22

References
1. Raphael Finkel and Udi Manber, ‘‘DIB — A Distributed Implementation of Back-

tracking,’’ ACM Transactions on Programming Languages and Systems 9(2) pp.
235-256 (April 1987).

2. Vipin Kumar and V. Nageshwara Rao, Scalable Parallel Formation of Depth-First
Search.

3. Igor Steinberg and Marvin Solomon, Searching Game tree in Parallel.

4. John Philip Fishburn, ‘‘Analysis of speed up in Distributed Algorithms,’’ Ph.D.
Thesis, Department of Computer Science, University of Wisconsin-Madison
(1981).

5. D. V. Knuth and R. W. Moore, ‘‘An analysis of alpha-beta prunning,’’ Artificial
Intelligence 6 pp. 293-326 (1975).

6. Selim G. Akl, David T. Barnard, and Ralph J. Doran, ‘‘Desing, Analysis, and
Implementation of a Parallel Tree Search Algorithm,’’ IEEE PAMI-4(2)(March
1982).

7. R. A. Finkel and J. P. Fishburn, ‘‘Parallelism in alpha-beta search,’’ Artificial Intel-
ligence 19 pp. 89-106 (1982).

8. T. A. Marsland and M. Campbell, ‘‘Parallel Search of Strongly Ordered Game
Trees,’’ Computing Surveys 14(4) pp. 533-551 (December 1982).

